
Automating the Product Derivation Process of Multi-Agent Systems Product Lines

Elder Cirilo*,Ingrid Nunes*,Uirá Kulesza†,Carlos Lucena*
*Computer Science Department

Pontifical Catholic University of Rio de Janeiro
Rio de Janeiro, Brazil

e-mail: {ecirilo,ionunes,lucena}@inf.puc-rio.br
†Department of Informatics and Applied Mathematics

Federal University of Rio Grande do Norte
Natal, Brazil

e-mail: uira@dimap.ufrn.br

Abstract— Agent-oriented software engineering and software
product lines are two promising software engineering
techniques. Recent research work explores the integration
between them to allow reuse and variability management in
the context of complex systems. However, the automatic
product derivation process is not addressed in the current
literature. In this paper, we present our proposed approach to
deal with multi-agent systems product lines (MAS-PL)
variability management and automatic product derivation.
Our approach is implemented as an extension of the GenArch
product derivation tool. A case study illustrates how the
proposed approach can be used to derive products (instances)
from a MAS-PL.

Resumo— Engenharia de software orientada a agentes e linha
de produtos são duas técnicas de engenharia de software
promissoras. Trabalhos recentes exploram a integração entre
essas técnicas para permitir reuso e gerência de variabilidade
no contexto de sistemas complexos. No entanto, o processo de
derivação automática não é abordado na literatura corrente.
Este artigo apresenta uma abordagem para lidar com gerência
de variabilidades e derivação automática de produtos em
linhas de produto de sistemas multi-agentes (LP-MAS). Ela é
implementada como uma extensão de uma ferramenta de
derivação de produtos existente. Um estudo de caso ilustra
como a abordagem proposta pode ser utilizada para derivar
(instanciar) produtos de uma LP-MAS.

Keywords-Multi-agent Systems, Software Product Lines;
Application Engineering; Model-driven Development; Product
Derivation Tool.

I. INTRODUCTION

A wide range of modern software systems present several
common characteristics, e.g. pro-activity, autonomy, context-
awareness and high interactivity, which have been
challenges for the software engineering discipline. These
systems are usually distributed in dynamic and uncertain
environments and have multiple loci of control. A not
exhaustive list of application domains that illustrate this
scenario are robotics, decision-support, personal-assistance,
vehicle insurance, simulation, medical-record processing and
e-commerce. These complex and distributed systems call for
new software engineering methods and techniques to address
their particularities. Among several approaches that have

aimed at developing this kind of systems [1], [2], agent-
based approaches are often the choice [3], which involve
metaphors such as autonomous agents, agent goals and agent
societies. As a consequence, advances in the area of Agent-
oriented Software Engineering (AOSE) have been proposed
through novel techniques such as methodologies, modeling
languages, processes, and implementation strategies directed
to Multi-agent Systems (MASs). AOSE [4] is a prominent
software engineering paradigm, which addresses the
analysis, design and implementation of software systems
based on these higher level abstractions, i.e. agents, roles,
organizations, structuring applications with autonomous,
pro-active and communicative components.

Even though the contributions of the AOSE have
significantly improved the development of distributed and
complex systems, current AOSE methodologies have barely
taken into account the adoption of extensive reuse practices
that may bring an increased productivity and quality to the
software development [5]. Software reuse techniques, such
as component-based development, object-oriented
application frameworks and libraries, patterns, have been
widely used in the software engineering context to promote
reduced time-to-marked, quality improvement and lower
development costs. A new promising trend is Software
Product Lines (SPLs), which have become a mainstream
reuse practice that addresses the design and implementation
of a set of domain related artifacts in order to deliver high
quality customized software in a short time-to-marked by the
exploitation of applications commonalities.

Only recent research [6], [7], [8] has explored the
integration between SPLs and agent-based approaches,
which have been denoted by Multi-agent Systems Product
Lines (MAS-PLs). The main aim of MAS-PLs is the
incorporation of the benefits of both SPL and MAS and
allowing reuse and variability management in the context of
complex systems. Research work associated with the MAS-
PL development has proposed extensions of MAS
methodologies [6], [7] and new processes [8] to support the
analysis, design and implementation of MAS-PLs. Although
these proposed approaches provided substantial advances in
the MAS-PL development, they focused in the domain
engineering process and little effort has been done in the
application engineering process, in which the applications of
the SPL are built by reusing domain artifacts and exploiting

the SPL variability. Moreover, they do not provide tool
support in order to allow an effective product derivation
process. Given that the success of the application
engineering process is directly associated with the
effectiveness of the SPL [9], there is a clear need of (i)
approaches that address this process of the MAS-PL
development and (ii) product derivation tools that automate
the instantiation process by facilitating the selection,
composition, configuration and integration of MAS-PL
assets and their respective variabilities. This is particularly
essential in the context of MASs, given that they typically
encompass several concerns (e.g. trust, coordination,
transaction, state persistence) that are implemented by
different technologies, application frameworks or platforms.
This fact demands managing plenty of core assets and their
configuration, which in turn is highly error-prone and time-
consuming without the adoption of appropriate techniques
and tool support.

Modern software engineering approaches, such as
Generative Programming [10] and Software Factories [11],
motivate the definition of mechanisms to support automatic
product derivations through the use of domain-specific
languages (DSLs) and code generators. Several product
derivation tools based on feature model [12] or DSLs [10],
[11] have already been proposed and are used in the industry.
Many of these tools are generic enough to deal with MAS-
PLs implemented using agent frameworks and platforms
based on object-oriented technology. However, the
configuration knowledge associated with agent abstractions
are not captured by these tools, which is essential
information for tracing features to agent
concepts/abstractions and for a better MAS-PL management
and evolution.

In this paper, we present an approach that addresses the
application engineering process for MAS-PLs. The main
goal of our approach is to provide models to capture the
configuration knowledge associated with agent abstractions,
thus enabling the MAS-PL variability management and
automatic product derivation. Our approach extends a
model-based approach [13] by the incorporation of domain-
specific architecture models and dependency links among
models already provided (e.g. feature model) and the new
domain-specific architecture model. This approach [13] is
implemented by the GenArch tool [13], [14], a model-driven
product derivation tool that aims at defining a lightweight
process to achieve automatic product derivation. Using the
information provided by an agent-specific architecture
model, the extended tool allows to automatically deriving
specific products of MAS-PLs. This model allows specifying
agent abstractions and concepts, e.g. agents, goals and plans.
The tool is then extended to incorporate this model and to
allow deriving agents implemented with Jadex, a widely
adopted agent implementation framework [15]. We evaluate
our approach by comparing it with a manual derivation
process based on configuration files.

The remainder of this paper is organized as follows.
Section II provides a brief background on the main
approaches related to this paper, i.e. MASs and SPLs.
Section III gives an overview of the OLIS MAS-PL, which is

used to illustrate and motivate our approach. The main
contributions of this paper are presented in Sections IV, V
and VI, which present our application engineering approach
to allow the automatic derivation of MAS-PLs, an evaluation
of our approach and point out some discussions about the
proposed approach, respectively. Section VII presents related
work, followed by Section VIII, which concludes this paper
and gives directions for future work.

II. BACKGROUND

MAS-PLs are the integration between MASs and SPLs,
whose aim is to take advantage of both approaches and help
on the industrial exploitation of MASs. In this section, we
introduce multi-agent systems (Section II-A) and software
product lines (Section II-B) in order to provide a background
for the reader understand the approach presented in this
paper. In addition, we present the GenArch (Section II-C),
our previous work on the product derivation process of
SPLs.

A. Multi-agent Systems

In the context of software engineering, MASs are viewed
as a paradigm, which addresses the development of systems
that contain many dynamically interacting components, each
with their own thread of control while engaging in complex,
coordinated protocols. The main idea of AOSE [4] is to
decompose complex problems into autonomous, pro-active
and reactive entities with social ability, namely agents.
Besides the agent concept, agent-oriented approaches are
based on high level abstractions, such as roles and
organizations, which become natural metaphors for
developing complex and distributed systems.

A main difference between an agent and an object is that
the former encapsulates not only state, but also the behavior
selection process and when such behaviors are necessary.
Hence, agents are typically developed with cognitive abilities
usually modeled as goals to be achieved, plans to achieve
these goals and beliefs (mental state) necessary to execute
plans.

B. Software Product Lines

Software product lines (SPLs) have emerged as a
mainstream software development practice to promote
improvements in the time-to-market, cost, productivity and
software quality. A SPL comprises a set of products
(variant), scoped to a specific market segment (domain) and
based on inter-product commonality and variability.
Software Product Line Engineering (SPLE) is a paradigm to
develop software applications using mass customization, and
a common and flexible architecture (platform) implemented
by a set of reusable assets in order to deliver high quality
software in a short time-to-marked with a significant reduced
cost. SPLE typically specifies, designs and implements
software products in terms of features. A feature [10] is a
system property that is relevant to some stakeholder.
Features are typically organized into feature models [16] and
have been widely used to represent variability in a domain. It
provides an ample description of the SPL requirements,
capturing commonalities and discriminating among products

in a SPL. In addition, a feature model also models constraints
among features. A constraint can be a first-order logic
expression that models dependency rules among features. It
can describe: (i) illegal combinations of features; or (ii)
dependence among features.

C. GenArch: a Model-based Product Derivation Tool

GenArch [13] is a model-based product derivation tool
founded on generative programming [10]. The variability
management in the GenArch approach is accomplished by
means of three models: (i) feature model (problem space);
(ii) architecture implementation model (solution space); and
(iii) configuration model (configuration knowledge). The
approach uses the feature model proposed in [10], which
aggregates additional information, such as feature cardinality
and attributes, to the one proposed in FODA [16]. The
architecture model defines a visual representation of the SPL
implementation elements (classes, aspects, templates,
folders, files, and fragments) in order to later relate them to
domain features. Fragments are used to aggregate pieces of
code (or text) that implement a specific feature. They are
mainly used to represent variabilities that exist in
configuration files, e.g. XML or properties files. Templates
are used to define incomplete implementation elements,
which are either configuration files or classes and aspects,
that contain common and variable code from a SPL. The
variable parts of a template are customized based on
information provided by the derivation models. Finally, the
configuration model is responsible for defining the mapping
between features and implementation elements. It represents
the configuration knowledge from a generative approach
[10], being fundamental to link the problem space (features)
to the solution space (implementation elements). These

models provide the necessary information to derive products
from a SPL.

Based on this approach, the GenArch tool offers a code-
oriented variability management, which supports automatic
product derivation based on three main steps: (1) automatic
models construction; (2) artifacts synchronization; and (3)
product derivation. Figure 1 shows an overview of the
GenArch approach. The importing module enables the
creation of initial versions of the derivation models (Step 1)
by parsing the code assets that implement the SPL
architecture. It is based on specific annotations to
characterize that a particular Java code asset addresses a
specific feature (@Feature) and/or represents a variation
point (@Variability), such as a hotspot framework class.
The synchronizer module keeps the consistency between
GenArch derivation models and SPL code assets (Step 2).

The GenArch product derivation process (Step 3), i.e. the
customization and compositions of the SPL architecture, is
driven by an instance (also known as configuration) of the
feature model. So, the first step of the GenArch product
derivation process is the creation, by an application engineer,
of this feature model configuration. During the derivation
process, GenArch decides, based on both feature model
configuration and configuration model, which code assets
will be selected and customized. Template technology is
used to implement the elements that must be customized in
the derivation time. A template is able to collect information
from derivation models to customize its respective variable
parts of code. More details about GenArch templates can be
found in [13]. The GenArch derivation process is concluded
with code generation based on the processing of templates
and the loading of the selected and generated code assets.
Additional details about GenArch tool can be found in [13].

Figure 1. GenArch Approach Overview

1) GenArch Architecture Overview
GenArch has been developed as an Eclipse [17] plug-in

using different generative technologies available for this
platform (see Figure 1). Some of them are: (i) Eclipse
Modeling Framework (EMF) [18] – used to specify GenArch
derivation models; (ii) openArchitectureWare (oAW) [19] –
used to deal with templates; and (iii) Java/Aspect
Development Tooling (JDT/AJDT) [20] API – used to
browse the Abstract Syntax Tree (AST) of Java classes and
AspectJ aspects. This allows us to parse code assets (classes,
aspects, configuration files), and process Java annotations
and metadata in order to enable the automatic creation of
GenArch models.

The feature model used in our tool is specified by a
separate plugin, called FMP (Feature Modeling Plugin) [21].
It allows modeling the feature model proposed in [10], which
supports modeling mandatory, optional, and alternative
features, and their respective cardinality.

III. OLIS MAS-PL: THE MOTIVATING EXAMPLE

In this section, we present the OLIS case study, which is
a MAS-PL of web systems that provide several personal user
services, such as calendar and events announcement. The
OLIS product line defines services that can be configured to
automate user tasks by means of software agents (optional
features). Because of that, it can be considered a MAS-PL,
which enables the introduction and customization of some of
its agents. The OLIS case study will be used, in next section,
to exemplify how the approach for the derivation process of
MAS-PLs proposed in this paper is able to automatically
derive MAS-PL members.

The four main services that compose OLIS are: (i) User
Management – allows users to register themselves and
configure their account; (ii) Events Announcement service –
allows users to announce events to other system users
through an events board; (iii) Calendar service – allows users
to schedule events in their calendar. Besides the information
of events published in the events board, calendar events have
a list of users that participate of it. Additionally, announced
events can be imported to the users' calendar; and (iv)
Weather service – provides information about the current
weather conditions and the forecast of a location. Besides
these services, the OLIS MAS-PL provides an alternative
feature: the event type. The product line can derive systems
for dealing with generic, academic and travel events. Figure
2 shows the feature model of the OLIS MAS-PL, detailing
its services and their optional features. Additional details
about the OLIS architecture and implementation can be
found in [22].

There are different customizations that can be applied to
the OLIS services. These customizations represent optional
features of the OLIS MAS-PL. Examples of such
customizations are: (i) Events Reminder – sends notifications
to notify the user about events that are about to begin; (ii)
Events Scheduler – checks the event participants' schedule to
verify if a new event conflicts with other existing ones. In
this case, the system suggests a new date for the calendar
event that is appropriate according to the participants’

schedule; and (iii) Events Suggestion – automatically
recommends events based on user preferences.

Figure 2. OLIS Feature Model

Most of the optional OLIS features provide a pro-active
and autonomous behavior for the system services. Due the
suitability of the agent abstraction to model this kind of
behavior, we have introduced software agents and agent
roles into the architecture to implement these features, which
we named agent features. This autonomy property refers to
agents able to act without the intervention of humans or other
systems: they have control both over their own internal state,
and over their behavior [23]. OLIS agent features are
realized by the Jadex framework. This framework addresses
developing agents that follow the belief-desire-intention
(BDI) model [24]. Through a reasoning engine, this
framework makes it easier the development of cognitive
agents. The Jadex provides agent concepts as first-class
elements, which are agents, believes, goals, plans,
capabilities, events and expressions. In particular, a Jadex
capability allows that beliefs, goals and plans to be placed
together in a separated module, in a way that this module can
be reused by different agents.

The OLIS MAS-PL was designed in such way that the
system can be evolved to incorporate new services without
interfering in the existing ones. It was structured according to
the Layer architectural pattern. The layers that compose the
architecture are GUI, Business, and Data.

A. Challenges on MAS-PL Product Derivation

The application domain that we are currently exploring is
MAS-PLs of web-based systems. Applications in this
domain typically present a set of different concerns, e.g.
transaction, persistence, pro-activeness and autonomy.
Usually such concerns are resolved at the implementation
level by different application frameworks. For example, in
the OLIS case study, the pro-activeness and autonomy
concerns are achieved by means of the Jadex framework.
The use of these frameworks introduces new concepts in
MAS-PL architectures that must be considered in their

documentation. In addition, several frameworks are based on
configuration files that must be manipulated in the product
derivation process of product lines.

The OLIS MAS-PL provides five optional features and
one alternative feature with three different options, which
lead to 96 different product configurations, not taking into
account dependencies between features that restrict some of
these product configurations. Even though the OLIS
architecture was developed with appropriate techniques to
modularize its features, the application engineer still needs to
manually configure the artifacts that implement the MAS-
PL, including configuration files, during the derivation
process, which is a challenging task. First, to ensure the
reliability and consistency of the derivation process the right
implementation elements must be selected. This selection
must be in accordance with the selected features and
dependencies among them. For instance, if the Event
Suggestion feature was selected for a certain product, it must
also contain the Configure User Preferences feature due to a
feature constraint. Consequently, in the solution space, the
agent that implements the Event Suggestion feature depends,
directly, on the code assets that implement the Configure
User Preferences feature. This process corresponds to the
propagation of the feature selection from the problem space
to implementation elements (solution space). Second, in the
OLIS MAS-PL, for example, to manage variabilities and
their dependencies, the application engineer needs to
configure eleven Jadex agent definition files, which together
add more than one thousand lines of code. Additionally,
most of OLIS MAS-PL features have their implementation
spread over more than two files, which makes it difficult and
increase the complexity of understanding the mapping
between different elements from the problem to the solution
space.

This scenario shows that without suitable variability
management mechanisms to modularize the configuration
knowledge and to deal with the large amount of variabilities,
dependencies among features and heterogeneous

implementation elements, the manual derivation process may
become error-prone and time-consuming.

Furthermore, despite some works [25], [26], [27] have
stated how to automatically resolve dependencies among
features in the feature model, there is still a lack of MAS-PL
specific mechanisms that enable the propagation of this
decision made in the problem space (feature model) to the
solution space. A particularity of MAS-PLs is that they
present additional abstractions, such as agents, beliefs and
goals. MASs are designed with such abstractions, which are
typically implemented based agent platforms that rely on
object-oriented languages. Therefore, MAS-PLs require
dealing with three different levels of abstractions: (i) feature;
(ii) MAS design abstractions; and (iii) implementation
elements. Current approaches allow mapping from (i) to (iii),
however the configuration knowledge related to MAS
abstractions are not captured by them.

In this context, next section details an extension of the
model-driven approach used in the GenArch approach that
addresses the variability management and automatic product
derivation of MAS-PLs.

IV. AN APPROACH FOR AUTOMATING THE DERIVATION

PROCESS OF MAS-PLS

In Section 2, we presented the GenArch model-driven
approach that allows to automatically deriving products from
SPL architectures. In this section, we present how this
approach was extended to address the variability
management and automatic product derivation of MAS-PLs.
Our approach was implemented as an extension of the
GenArch approach. Figure 3 depicts the approach proposed
in this paper, highlighting the differences from the previous
version (Section II-C).

Basically, our solution to manage the configuration
knowledge associated with MAS-PLs is based on the agent-
specific architecture model. It provides modular variability
management of agents and their related concepts and
underlying implementation elements. This architecture

Figure 3. GenArch approach extended to MAS-PL

model is based on higher level abstractions, which latter are
mapped to lower level ones. Lower level elements in our
approach are any object-oriented concept, or configurations
defined into Agent Definition Files (ADFs). An ADF is an
XML file that captures a complete definition of an agent or a
capability in the Jadex framework. It contains all relevant
properties of an agent (e.g. beliefs, goals and plans).

In next sections, we detail the approach describing (i) the
agent-specific architecture model (Section IV-A); (ii) how to
document and model the configuration knowledge (Section
IV-B); (iii) how agent-specific implementation code assets
(Jadex) are processed to create an initial version of the
models (Section IV-C); and (iv) how the new models are
used to automatically derive MAS-PL products, i.e. the
MAS-PL derivation process (Section IV-D). Along all
sections, our approach is illustrated with the OLIS MAS-PL,
which was described in previous section.

A. Agent-specific Architecture Models

The aim of the agent-specific architecture model is to
provide a formal and modular solution to document the
configuration knowledge of MAS-PLs based on agent
abstractions – it describes the MAS-PL architecture by
means of agents, capabilities, goals, believes, and so on.

Figure 4(M) shows the agent-specific architecture model
that describes the OLIS implementation architecture using
Jadex vocabulary. This model characterizes Jadex agents as
an aggregation of capabilities, goals, beliefs, plans, events,
and expressions. A capability, similar to an agent, can be
associated with goals, beliefs, plans, events, expressions, and
others capabilities. Finally, plans, goals, events, beliefs and
expressions are simple elements. Figure 4(M) illustrates, for
example, that the Weather agent encompasses three goals
(getWeather, discoverLocation, consultWeather),
one belief (client), and five plans (forecastRequest,
weatherRequest, getWeather, discoverLocation,
consultWeather).

The agent-specific architecture model was specially
designed to allow GenArch to deal not only with object-
oriented (Java) and aspect-oriented (AspectJ) elements
(Section II-C), but also with Jadex ADFs during the
derivation process (Figure 3).

B. Adding New Levels to the Configuration Knowledge

Besides documenting the SPL architecture by means of
agent’s concepts, the agent-specific architecture model
enables defining mapping relationships between these
concepts and their respective implementation elements. For
example, Figure 4 illustrates that the
ForecastRequest.java and a code fragment called
forecast_request_plan are directly related to the
forecastRequest plan of the Weather agent.

For the derivation process, each reference defines an
implication constraint where the presence of the related
lower level element depends on the positive evaluation of the
presence of the higher level one. In other words, it means
that, if the higher level element must be part of one product,
then the associated lower level element must also compose
this product. In the scenario illustrated in Figure 4, for
example, if the Weather agent is selected to be part of one
product, the ForecastRequest.java and
forecast_request_plan must also be part of this
product.

The extended configuration model provided by our
approach (Figure 4(C)) allows the domain engineer to define
different levels of configuration. Fine-grained configurations
can be created by the default mapping relationships of
specific implementation elements (classes, aspects, files) to
any product line feature [13]. Coarse-grained mapping
relationships of Agent elements to product line features can
be defined by domain engineers in specific views into the
configuration model (Figure 4(C)). A mapping relationship
between a feature expression and an architectural element
(configuration model) defines an implication constraint

Figure 4. OLIS Agent-architecture Model and Configuration Knowledge

where the presence of the architecture element depends on
the positive evaluation of the related feature expression.

As it can be seen in Figure 4(C), the Weather optional
feature was mapped to the Weather Agent. It means that the
Weather Agent will only be part of the final product if the
Weather feature is selected in the feature model
configuration provided by an application engineer. The
EventReminder, EventAnnouncer and
EventScheduler variable capabilities are also mapped to
specific features (Event Reminder, Event Announcement and
Event Scheduler, respectively) and are subjected to the same
evaluation.

C. Automating the Generation of Agent-specific
Architecture Models

One of the main targets of our approach is to provide
functionalities for parsing code assets metadata in order to
automatically generate initial versions of the derivation
models. Feature, configuration and architecture models can
be automatically created by parsing: (i) the Eclipse Java
project or directory that contains the implementation
elements of a MAS-PL; (ii) the GenArch annotations
introduced into the source code of Java classes; and (iii) the
Jadex ADF description files. In Section II, we presented the
automatic parsing of GenArch annotations. In this section,
we show how Jadex-specific artifacts are processed to derive
an initial version of their respective architecture model.

The creation of Agents, Capabilities, Goals, Plans,
Events and Expression elements in the agent-architecture
model is accomplished by means of an automatic parsing of
code assets (Jadex ADF and XML tags) that implement these
elements (Figure 3). Each Jadex ADF can describe either
agents or capabilities. Therefore, an ADF can demand the
creation of an Agent or Capability element in the agent-
specific architecture model. The Goals, Plans, Events and
Expressions are created from respective tags described in the
ADF. The source codes that implements these elements are
extracted to implementation model fragments. It also
demands the creation of a mapping between the created
implementation model fragments and the respective agent-
specific architecture model element.

The initial version of these models, built automatically,
may or must be refined by the domain engineer. This
refinement is necessary in order to guarantee that: (i) the
feature model represents all domain variability and
commonalities; (ii) the architecture model represents the
whole MAS-PL code assets; (iii) the agent-specific
architecture model expresses the entire design of the agents
that compose the MAS-PL; and (iv) additional mapping
relationships between variability in the feature model and
agent elements in the agent-architecture model.

D. The MAS-PL Automatic Product Derivation Process

As mentioned previously, our approach was implemented
by extending the GenArch tool. Additional details of the
implemented tool can be seen in [28]. In this section, we
describe the derivation process of our approach, with some
implementation details. This implementation is specific for
the Jadex framework.

The GenArch derivation process for the OLIS MAS-PL
(or each MAS-PL based on the Jadex framework) is
accomplished by the following steps: (i) selection of the
Agents, Capabilities, Plans, Goals, Events, Expression that
will compose the architecture of the instance (product) from
the MAS-PL; (ii) selection of the code assets (class, aspects,
files, components, folders) that will be part of the derived
product; and (iii) customization of Jadex ADFs – ADFs are
XML files that define agents and capabilities.

The selection of agents, capabilities and other
abstractions from the Jadex framework (step 1) is
accomplished based on the configuration knowledge
provided by the configuration model, which relates features
to agent concepts. After that, the GenArch tool uses the
information provided by the agent-specific architecture
model (step 2) that relates agent concepts with
implementation elements; to decide which implementation
elements (classes, interfaces, aspects, etc.) will be part of the
final product generated. The selection process is supported
by the dependency links defined in both agent-specific
architecture model and configuration model. To
automatically compute these dependency links, we map them
into a constraint satisfaction problem (CSP). Consequently,
the CSP is evaluated with respect to a valid feature model
configuration by a constraint solver. The purpose of a
constraint solver is to find a valid value for each variable of
the CSP that simultaneously satisfies all constraints in the
CSP. Previous work [25], [26], [27] has shown how to
transform feature models into a CSP in order to automate, for
example, feature selection. In our work, we extend this
technique to help the resolution of the implementation
elements selection in the solution space.

The customizations of the OLIS Jadex Agent and/or
Capabilities ADFs are realized by means of template files
(step 3). Figure 5 shows a summarized version of the
template that implements the UserAgent ADF. This part of
the code enables GenArch to customize the capabilities the
UserAgent will contain. The LET statement enables the
template to get the specified element (UserAgent) from the
agent-specific architecture model. The FOREACH statement
enables the template to iterate through the collection of
capabilities of the UserAgent. Thus, for each capability
presented in this collection, the template gets the code
fragment associated with it, which is also defined in the
agent architecture model (see Figure 4(M)), and writes the
content in the generated file. It means that, if the application
engineer selects the Event Reminder and Event Scheduler
optional features and does not select the Event Suggestion,
consequently the derived collection of capabilities will not
contain the EventSuggestion capability. The content of
each code fragment related with the selected elements will be
written in the generated UserAgent ADF, as shown in
Figure 5.

V. EVALUATION

This section summarizes our experience with the use of
our approach to enable the automatic product derivation of
MAS-PLs implemented using the Jadex framework. We use

the OLIS case study to conduct a preliminary evaluation of
the gain and effort of using our approach.

TABLE I. CONFIGURATION COST OF THE OLIS MAS-PL

Feature Lines of Code/Files

Configure User Preferences 3/1

Event Reminder 114/2

Event Suggestion 237/2

Academic 125/2

Event Scheduler 362/3

Travel 175/2

Generic 0

Weather 224/1

Total 1240/13

Our first step was to quantify the cost of manually

deriving products from the MAS-PL in terms of the number
of files (and their size) needed to be manipulated in the
derivation process, i.e. we have counted how many XML
files and their lines of code an application engineer should
deal with during the derivation process. Table I summarizes
the total of lines of XML code that must be manipulated for
each optional and variable feature implemented by the OLIS
MAS-PL during the derivation process. Without appropriate
mechanisms to modularize and make the configuration
knowledge related with Jadex elements explicit, the
application engineer would be required to know about the
manual configuration of more than one thousand lines of
XML code spread over 13 XML configuration files.

By modeling the OLIS MAS-PL using the new agent-
specific architecture model we have assessed that it helps to
reduce 100% the total amount of lines of XML code that
must be manipulated. Once the models proposed in our
approach are generated, the derivation process is performed
automatically. In addition, this preliminary assessment also
states the importance of the agent-specific architecture model
to face the challenge associated with configuration
knowledge that is usually found spread over different
configuration files, as discussed in Section III-A. Table I also
shows that most of the features have their configuration
knowledge described in more than two files. In this way, our

agent-specific architecture model also contributes to reduce
the spreading of the configuration knowledge by aggregating
information about all the configuration files in a unique
model representation.

Besides the benefits related to the amount of lines of
XML code and modularization of the configuration
knowledge, we believe that the agent-specific architecture
model also brings advantages to the product line engineer to
understand, localize and modify both the SPL architecture
implementation and the associated configuration knowledge,
thus contributing directly to the variability management.

Although our approach brings the advantages discussed
above, it requires an extra initial investment of building the
derivation models. It also requires the addition of extra
mapping relationships on the configuration model that maps
feature to architectural elements (classes, files, agents, etc).
Therefore, the second step of our evaluation was to measure
the cost of building the models of our approach. The initial
effort needed to build our approach models and its respective
configuration knowledge was assessed by counting the
number of operations needed to accomplish this task. An
operation is (i) create a model; and (ii) include a model
element. Table II presents the results for the OLIS MAS-PL.

TABLE II. MODELS CREATION COST OF THE OLIS MAS-PL

Feature Number of Operations

Feature Model 24

Agent-specific Architecture Model 203

Implementation Model 585

Configuration Model 13

Total 825

Comparing the number of lines of code that must be

manipulated and the number of operations of creating
models, it can be seen that the latter is lower than the former.
So, it indicates that the cost of adopting our approach is
lower than manually deriving products. However, this
comparison is between lines of code and operations,
therefore we are aware that this evaluation may be unfair. As
stated previously, this is our preliminary evaluation, and our
goal is to perform a more sophisticated evaluation of our
approach.

Figure 5. User Agent ADF Template

Furthermore, even though there is an initial cost of
building the derivation models, it is spent only once, rather
than each time of a product derivation. In the literature, it is
discussed that the initial investment and the time-to-market
of building a SPL is higher than building a single product.
However, according to [29] this effort is usually
compensated after the third derived product. Finally, the
process of building an initial version of the architecture
model and of the agent-specific architecture model can be
amortized by the GenArch automatic model generation
feature (described in Section IV-C). The simple model
generation feature implemented by GenArch is able to create
a complete version of these models, which are 95% of the
effort to build the whole configuration knowledge. We are
currently exploring new mechanisms to improve the
generation of this additional configuration knowledge from
existing code artifacts (configuration files, classes, aspects,
etc).

VI. DISCUSSIONS

Generalizing our Approach to Other Technologies.
Despite the focus on the Jadex framework, our approach is
generic enough to deal with different agent frameworks or
platforms. In fact, GenArch has been evolving to incorporate
new component technologies and aspect-oriented
programming [13], [14]. This work is a first step in the
direction of a generic derivation tool based on multiple
domain and platform specific models. Multi-models can also
improve the management and traceability of SPL features
bringing several benefits to the change impact analysis
during the SPL evolution. However, keeping the dependency
links between these models and artifacts updated,
synchronized and consistent is a difficult task. The
configuration knowledge between feature models and the
Jadex platform-specific model provided by our GenArch
extension is a prominent solution to help the automatic
generation of dependency links between models from
problem to solution space. In the case of MAS development,
the generation of the dependency links is still more important
due to large amount of models and abstractions that the
paradigm requires to leverage the abstraction level of
software development.

Using our approach to provide self-adaptation. Over the
last years, the software engineering community has
investigated how to support the development of dynamic
evolutionary systems. A MAS can be seen as an open and
evolutionary system, where agents can enter and leave at any
time and dynamically modify its structure. Due to the
autonomy property of agents, they also provide a low
coupling model in which a change on any entity does not
deeply affect the entire system. Thus, it can be adopted as a
technique to implement software systems, in which an
autonomous and pro-active agent is able to manage itself. On
the other hand, Dynamic Software Product Line Engineering
(DSLPE) [30] has emerged motivated by the application of
SPLs in several dynamic domains, such as ubiquitous
computing, context-aware computing, and autonomic
computing. DSLPE can promote the reuse of domain-
specific adaptations across a family of related self-adaptive

products while providing a systematic approach for dynamic
variability management [30]. This paper can be seen as an
initial attempt toward a SPL based approach to support self-
adaptation in MASs. Each different state of the MAS can be
seen as a MAS-PL product. Feature model and Multi-level
models can be used to provide to the system the capability to
describe its properties and to reason about the possible
adaptations at different abstraction levels. We are currently
investigating how GenArch can also provide a feature
derivation process, which enables the achievement of
automatic feature deployment and reconfiguration.

VII. RELATED WORK

Only few works that consider the automatic development
of MASs have been proposed. Kulesza et al. [31] present a
generative approach that addresses the challenges in MAS
modeling and development, mainly focusing on crosscutting
agent features. The approach proposed by these authors is
composed of: (i) a domain-specific language (Agent-DSL)
used to model the orthogonal and crosscutting features of
software agents; (ii) a code generator; and (iii) an aspect-
oriented architecture that encompasses a set of aspectual
components that modularize the crosscutting agent features.
The code generator is used to map the abstractions described
in the Agent-DSL to specific compositions of objects and
aspects in the proposed agent architecture. The approach
proposed in this paper can be seen as an evolution of this
previous approach by providing more extensible mechanisms
to derive different domain and technology specific product
lines and applications. In this paper, for example, we have
demonstrated that our approach is suitable to address the
product derivation of Jadex based applications.

Hahn [32] presents a set of platform independent domain
specific languages (DSLs), called DSML4MAS, which
enable the definition of MASs in a graphical visualized
manner. These DSLs are used to automatically generate a
MAS in a model-driven architecture (MDA) manner. Similar
to our approach, this work enables the MAS development
based on the definition of high-level models. However, it is
concerned only with the automatic generation of single
systems, not addressing the development and automatic
derivation of system families or SPLs. Our approach enables
the mapping between MAS DSLs and feature models in
order to allow the modeling and implementation of MAS-PL
architectures with their respective variabilities, as well as to
help the process of automatic product derivation of MAS-
PLs.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach that enables the
automatic product derivation for Multi-Agent Systems
Product Lines. The approach extended a model-driven
approach implemented by GenArch, which is our existing
product derivation tool. The main idea of our approach is to
incorporate the agent-specific architecture model to the SPL
specification in order to deal with higher level concepts,
including agent concepts such as beliefs, goals and plans. In
addition, we have provided means of linking this new model
to the existing ones (feature and implementation models) to

have the configuration knowledge that is needed for
automating the product derivation process. Our approach
was implemented as an extension of the GenArch tool.
Besides providing the new model, we improved the tool to
deal with files of the Jadex platform in order to generate an
initial version of the model. The main benefit of our
approach is to allow the automatic product derivation of
MAS-PLs, however we point out other advantages: (i) with
the domain-specific model, the knowledge of higher level
elements are not spread and obfuscated into the code; and (ii)
the quality and time of the derivation process are improved
because dealing manually with lots of files and
configurations is an error-prone and time-consuming task.
We illustrated the use of our approach and the MAS-PL
GenArch extension with the OLIS case study, which is a
MAS-PL of web applications that provide personal services
to users. We also presented a preliminary evaluation of our
approach to show its effectiveness.

As a future work, we aim at extending our approach to
address the composition of different domain-specific
architecture models. In the OLIS case study, for example, we
are also using a Spring-specific architecture model [14], thus
reflecting the composition between two different domain-
specific architecture model. We are currently working in a
flexible approach that addresses this kind of composition
exploring extensible mechanisms at the metamodel level.
Finally, we intend to apply the tool in more complex and
different MAS-PL case studies with the presence of both
coarse and fine-grained variabilities.

ACKNOWLEDGMENTS

This work has been partially supported by CNPq
557.128/2009-9 and FAPERJ E-26/170028/2008. It is related
to the following topics: Software technologies for web
applications - Model-driven Design and Implementation of
Web Applications - G3. Develop methodologies, empirical
studies and tools to support the development of software
product lines for the Web context.

REFERENCES

[1] G. Booch, Object-Oriented Analysis and Design with Applications

(3rd Edition). USA: Addison Wesley, 2004.

[2] C. Szyperski, Component Software: Beyond Object-Oriented
Programming. USA: Addison-Wesley, 2002.

[3] N. R. Jennings, “An agent-based approach for building complex
software systems,” Commun. ACM, vol. 44, no. 4, pp. 35–41, 2001.

[4] M. Wooldridge and P. Ciancarini, “Agent-oriented software
engineering: the state of the art,” in AOSE 2000, 2001, pp. 1–28.

[5] R. Girardi, “Reuse in agent-based application development,” in
SELMAS ’02, 2002.

[6] J. Pena, M. G. Hinchey, A. Ruiz-Corts, and P. Trinidad, “Building the
core architecture of a multiagent system product line: with an
example from a future nasa mission,” in AOSE’06, 2006.

[7] J. Dehlinger and R. R. Lutz, “Supporting requirements reuse in multi-
agent system product line design and evolution,” in ICSM, 2008, pp.
207–216.

[8] I. Nunes, C. Lucena, U. Kulesza, and C. Nunes, “On the development
of multi-agent systems product lines: A domain engineering process,”
in AOSE’09, 2009, pp. 109–120.

[9] S. Deelstra, M. Sinnema, and J. Bosch, “Product derivation in
software product families: a case study,” J. Syst. Softw., vol. 74, no. 2,
pp. 173–194, 2005.

[10] K. Czarnecki and U. W. Eisenecker, Generative programming:
methods, tools, and applications. USA: Addison-Wesley, 2000.

[11] J. Greenfield, K. Short, S. Cook, and S. Kent, Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and
Tools. Wiley, 2004.

[12] pure systems, “pure::variants,” http://www.puresystems.com/, 2009.

[13] E. Cirilo, U. Kulesza, and C. J. P. de Lucena, “A product derivation
tool based on model-driven techniques and annotations.” J.UCS, vol.
14, no. 8, pp. 1344–1367, 2008.

[14] E. Cirilo, U. Kulesza, R. Coelho, C. J. Lucena, and A. Staa,
“Integrating component and product lines technologies,” in ICSR ’08,
2008, pp. 130–141.

[15] L. Braubach and A. Pokahr, “Jadex bdi agent system,”
http://jadex.informatik.uni-hamburg.de, 2009.

[16] K. Kang, S. Cohen, J. Hess, W. Novak, and Peterson, “Feature-
oriented domain analysis (foda) feasibility study,” Software
Engineering Institute, Carnegie-Mellon University, Tech. Rep.
CMU/SEI-90-TR-021, November 1990.

[17] T. E. Foundation, “Eclipse.org home,” 2009, http://www.eclipse.org.

[18] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. J. Grose,
Eclipse Modeling Framework. Addison-Wesley, 2003.

[19] openArchitectureWare.org Official openArchitectureWare
Homepage, “openarchitectureware.org,” 2009,
http://www.openarchitectureware.org/.

[20] S. Shavor, J. D’Anjou, S. Fairbrother, D. Kehn, J. Kellerman, and P.
McCarthy, The Java(TM) Developer’s Guide to Eclipse. Addison-
Wesley, 2003.

[21] M. Antkiewicz and K. Czarnecki, “Featureplugin: feature modeling
plug-in for eclipse,” in eclipse ’04, 2004, pp. 67–72.

[22] I. Nunes, “Towards a multi-agent product line development
methodology,” 2008, http://www.inf.pucrio.br/˜ionunes/maspl/.

[23] M. Wooldridge, Intelligent Agents. England: The MIT Press, 1999,
ch. 1, pp. 27–78.

[24] A. S. Rao and M. P. Georgeff, “BDI-agents: from theory to practice,”
in ICMAS 1995, 1995.

[25] D. B. Pablo, P. Trinidad, and A. Ruiz-corts, “Automated reasoning on
feature models,” in CAiSE 2005, 2005.

[26] J. White, D. C. Schmidt, D. Benavides, P. Trinidad, and A. Ruiz-
Cort´es, “Automated diagnosis of product-line configuration errors in
feature models,” in SPLC ’08, 2008, pp. 225–234.

[27] J. White, D. Benavides, B. Dougherty, and D. C. Schmidt,
“Automated diagnosis of product-line configuration errors in feature
models,” in SPLC ’09, 2009.

[28] E. Cirilo, I. Nunes, U. Kulesza, and C. Lucena, “A multiagent
systems product lines derivation tool (to appear),” in ICSR 2009 –
Tool Demos, 2009.

[29] K. Pohl, G. Bckle, and F. J. van der Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Springer-
Verlag, 2005.

[30] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid, “Dynamic
software product lines,” Computer, vol. 41, no. 4, pp. 93–95, 2008.

[31] U. Kulesza, A. F. Garcia, C. J. P. de Lucena, and P. S. C. Alencar, “A
generative approach for multi-agent system development,” in
SELMAS, 2004, pp. 52–69.

[32] C. Hahn, “A domain specific modeling language for multiagent
systems,” in AAMAS ’08, 2008, pp. 233–240.

