
DWeb3D: A toolkit for developing X3D applications in a
simplified environment

Felipe Quintella
Tecgraf / DI / PUC-Rio

Rio de Janeiro, RJ, Brazil
felipe@crossway.com.br

Luciano P. Soares
Tecgraf / DI / PUC-Rio

Rio de Janeiro, RJ, Brazil
lpsoares@tecgraf.puc-rio.br

Alberto B. Raposo
Tecgraf / DI / PUC-Rio

Rio de Janeiro, RJ, Brazil
abraposo@inf.puc-rio.br

ABSTRACT
The X3D standard is open, supported by an international consor-
tium, mature and in constant development, but with a low adop-
tion rate. In this work, X3D qualities and problems are discus-
sed and correlated with other solutions. In this process it was de-
tected some necessities in current applications and the complexity
of X3D to deal with these issues. As an attempt to demonstrate
that the complexity of X3D in some aspects may be reduced, the
DWeb3D toolkit was built. DWeb3d is a toolkit to help the deve-
lopment of dynamic X3D applications, showing that it is possible
to simplify the development process, possibly increasing the access
to developers in this area. The toolkit provides tools to deal with
publishing, synchronism, interactivity, multiple users management
and disk persistence.

1. INTRODUCTION
One of the first solutions for 3D environments on the web was
VRML [18]. The VRML was well received by the Web commu-
nity, but its adoption was limited, and today much of what was cre-
ated in VRML is disappearing or is outdated. In the early 2000’s
to replace the VRML and try to overcome its limitations, X3D was
created [19, 6]. But even more than the VRML, the general com-
munity has not adopted X3D as the main 3D format. Several years
after its creation, and even with all the qualities it has, its adoption
is still very shy and there is no prospect of a short-term change to
that reality. One goal of this research is to analyze the possible
causes of this fact and propose methods that can change this.

Parallel to these technologies, there are attempts to provide 3D
content using specific plug-ins. The most used currently are the
Flash [1] and Shockwave 3D [7]. Flash has several limitations from
its basic architecture designed to deal with animations and videos,
not to 3D interactive content. Despite that, this tool has a much
higher acceptance rate to display 3D on the Web than X3D.

According to Toni Parisi [14], commercial developers are expres-
sing increasing interest in exploring real-time 3D in web applicati-
ons, as a way to increase product value and to provide information
in a significative manner. However, X3D and other 3D standards

are mainly focused on 3D content transmission, and not on the ap-
plication that involves them. Industry needs agile development en-
vironments for creating client-server applications for an agile and
highly interactive web.

While X3D is an open standard, powerful, extensible and has a con-
sortium, which maintains and supports it, it does not provide a very
simple environment of quick development. This factor is probably
a major cause of its low adoption rate. To analyze this phenome-
non, it is possible to draw a parallel with Flash and analyze why
it has greater acceptance. To that end, we may observe what Flash
has that X3D does not:

1. A well-accepted Graphical Editing Interface [5] and a pro-
gramming language known by many programmers.

2. A large base of programmers with knowledge of the lan-
guage.

Once the programmers are who decide which technology will be
used for their projects, it is important to offer resources and try
to popularize the environment to programmers. To achieve these
goals, it is suggested the development of a toolkit that simplifies
the process of development and prototyping, thereby accelerating
the acceptance of the technology.

In order to evaluate the usefulness of X3D it is important to deline-
ate features that would be needed for applications in the real world.
We can name a few of them with the reasons why they are useful
and then explain how they can be achieved today with what X3D
offers.

• Creating and manipulating a 3D scene [3, 2] – The objective
is achieved through the X3D definition.

• Creating events that respond to user input [14, 4] – The ob-
jective is achieved through specific structures and the possi-
bility of using ECMAScript and extensions of the standard.

• Loading and data persistence [10, 13] –This goal is achieved
through complex routines in ECMAScript and web services
that have a session control and state.

• Interaction with web GUI (Graphical User Interface) [14, 11]
– Can be made through ECMAScript calls, which requires
knowledge of the internal structure of X3D.



• Interaction between users accessing the same scene [3, 20] –
It is possible to be achieved through complex solutions invol-
ving ECMAScript, code on the server and session control.

• Integration with other applications [8] – Can be done via
webservices and ECMAScript.

It can be noted that X3D offers a good support for the first two
itens, but needs complex mechanisms to support the others. The
objective of this research is to develop tools for X3D and a demo
application to show that the technology is flexible enough to sup-
port that features, required by the developers, thereby increasing
the possibilities of adoption of the standard.

The paper is organized as follows. In Section 2 we present works
related to X3D limitations, specially regarding the features menti-
oned above, namelly, collaboration, interaction with the Web GUI,
integration with other applications, and persistence. In Section 3,
the DWeb3D structure is presented, and in Section 4 it is shown
how these features are treated in the proposed toolkit. Some exam-
ples are presented in Section 5, and conclusions in Section 6.

2. RELATED WORK
The subject of toolkits and creativity is widely exploited in [9] and
is of fundamental importance for the development of this research.
For a new area to develop it is necessary to give developers the
ability to test their creativity through a cycle of prototype, testing,
analysis, prototype, etc. This cycle provided in the methods of in-
cremental development allows the developer to check the progress
made in short periods of development. The discovery of ideas is a
key aspect in the concept of focusing on creativity as it allows the
developer to see if something that works has been created without
the great burden for the project.

There are some classic cases in which the presence of a structure
for the abstraction of lower layers was a key factor for the success
of a technology. The best-known example is the Web itself. The
advent of HTML enabled rapid adoption of the environment as a
repository of information, enough for developers to write their text
in a structured and link them to others. Another familiar example
is Flash, as its architecture allowed for the popularization of more
dynamic pages, with interactive animations or movies.

To achieve these goals within a project with complex requirements
there is a great need for code reuse. It is also necessary to elimi-
nate unnecessary layers in low-level operations that do not affect
the application. At this point a toolkit is extremely useful because
it encapsulates several job applicants and allows the developer to
focus on what is really wanted. The use of toolkits also promotes
good programming practices, since they already carry a concept of
decoupling, organization code and modeling.

This work presents the design and development of a toolkit for de-
veloping X3D applications covering the following topics:

• Collaboration between users;

• Interaction with the Web GUI;

• Integration with other applications;

• Data persistence.

In addition to implementing the above features, it is also purpose
of the toolkit to provide the necessary abstractions for application
developers using X3D to develop these applications faster and with
lower learning curve.

2.1 Limitations of the X3D
Just as VRML, X3D describes an entire 3D scene, which in turn
is interpreted by a browser itself or a plug-in for an existing web
browser. Like VRML, X3D also proposes to make the control of
the behavior of entities in the model within the file description of
the scene. With this, it makes self-sufficient models. As in the new
web applications, it is also expected that the environment of 3D ap-
plications offers collaboration between users, and this is not trivial
to achieve in the model proposed by X3D. We can understand the
world of X3D as several isolated 3D worlds, and they do not speak
with each other. If you want to make a world talk to another or set
one world where many users interact, it is necessary to make use of
various complex solutions.

X3D also does not deal very well with too complex or too large
scenes and this is due to its design. It must pass all information
from the scene at once to carry it. This method makes it expensive
for very large scenes, unviable for the web environment. Another
limitation detected is little support for complex physical simulati-
ons. Only in 2006 X3D has started to provide a sub-set for physical
simulations [17].

2.2 Collaboration
One of this project’s goals is to enable the interaction of two or
more people in a 3D scene [12]. This type of interaction is fairly
common in multiplayer games because one player’s action affects
the online experience of others. Games and visualization appli-
cations created the concept of virtual world, i.e., a persistent and
dynamic environment where several avatars coexist and interact,
thereby altering the environment and the perception of reality. In
late 2004 and early 2005 two products that have high expression
of virtual environments were launched, World of Warcraft1 and the
Second Life2. World of Warcraft has achieved great success, with
about seven million users. Second Life has a very different pro-
posal, because it allows its users to freely create the contents of
the virtual world. Its greatest merit is to offer the business world a
virtual environment with great acceptance.

Even being a success and the current major reference in terms of
virtual environments on the Web, Second Life does not have a good
integration with web pages and has much of its infrastructure con-
trolled by the company that created it, which limits the expanda-
bility and derivation of this product in new proposals. Even as a
powerful product, it lacks the flexibility of an open standard, and
the possibility of expansion that X3D has.

2.3 Interaction with the Web GUI
Among the desired characteristics for new web applications, inte-
raction with other components of the GUI is listed. It is important
because the technology of web pages is widely accepted and the
basis of what the Internet is today.

The chat world was one of the first applications to spread the web
using mostly the VRML, but there are some versions with X3D.
This is a chat environment where you can visit the virtual world and
1http://www.worldofwarcraft.com
2http://www.secondlife.com



talk with others who are visiting the same world. Initial versions
were little more than a page containing a 3D scene and a chat client
located on the same page. There was no collaboration or interaction
with the scene unless the navigation, there was an avatar or ways of
seeing the other participants. We can cite the ABNet3 as a client of
this era that still exists today. This particular technology works via
a Java client and ActiveX scripts that interact with the X3D/VRML
browser and update the necessary messages. It still uses a separate
dialog box to see the conversation, and interaction is limited to see
the avatar of another guest and talk to him in the dialog box.

Although it was quite interesting for that time and several scenes
have been created for this concept, this proposal includes several
limitations such as inability to handle the scene and create greater
interaction within it. But even with the limitations, this was one
of the most adopted uses of VRML, because it provides a package
that includes some of the features desired by developers and that
were difficult to achieve with pure X3D/VRML. In addition, it has
some level of interaction with the web pages, since it is inside the
page, and the chat is a component of that page.

2.4 Integration with other applications
Although they are usually limited to their browser and the virtual
3D environment, X3D scenes may have to interact with data and
events from other applications to be more interesting.

The Vivaty 4, developed by former MediaMachines, is a browser
which main quality is the ability for users to use custom avatars.
The product uses a concept called AJAX3D [14]. Using techni-
ques of asynchronous calls via scripts it enables that the scene and
web UI components interact. This product does much of its ope-
rations using the X3D standard, but not all, because you need a
specific plug-in for the browser, and it uses a proprietary protocol
to communicate with the server. Despite these limitations, it is an
interesting product because it presents a new approach for X3D so-
lutions, and can even integrate with popular community sites like
FaceBook.

2.5 Persistent state
Another necessary feature is to allow the persistence of state between
multiple instances of an X3D world. One example is the work pre-
sented in [3], which, among other points, explains that the persis-
tence of the avatars position is important because it creates an im-
mersive world where perception of the observer is placed inside the
virtual representation.

The persistence in database is also important for allowing multiple
servers have access to a common environment in a simple way, and
a more efficient storage of the virtual environment. But we could
not find any work proposing this specifically for X3D. Thus the
implementation of DWeb3D was made through the use of generic
techniques of object-oriented database as described in [10]. With
these techniques you can store the entire universe of application
objects and restore them when needed.

3. DWEB3D
This research proposes to develop a toolkit that reduces the learning
curve and time required for the development of X3D applications
with the features mentioned above (collaboration, interaction with
the Web GUI, integration with other applications, and persistence),
3http://kimballsoftware.com/abnet/
4http://www.vivaty.com

while promoting the rational reuse of code. Following this line of
reasoning, we have developed a toolkit to assist the development of
collaborative applications using X3D and an application that makes
use of this toolkit as a proof of concept. A toolkit is defined as a set
of development libraries that deal with various challenges encoun-
tered in developing an application with certain characteristics [9].

For the development of the toolkit C# in .NET platform was used.
For the case study, a rendering plug-in for Unity3D5 was developed.
The Unity3D is a graphics engine that aims to be modularized and
extensible, supporting a wide range of formats for import. The
choice was made because the Unity3D has a scripting language
based on C#, it has a plug-in for use on the Web, and it enables a
richer interface than using an existing X3D browser, since with the
X3D browser, the interface would have to be done in ECMAScript
and would be more complex.

3.1 DWeb3D Structure
The toolkit is divided into modules organized by function. Each
module represents a dynamic library. This enables a more rational
use, since if not all the functions are needed, it is not necessary to
add all the dynamic libraries to the application (Figure 1).

Figure 1: Components of DWeb3D.

3.2 Model
This constructor is the base of the toolkit’s operation. It contains
the graph and all classes that represent the structure of X3D. Also
here are the core classes for reading and writing X3D files, such
as X3DRepresentation and X3DHolder. X3DRepresentation is the
main class for manipulation of the graph. It is responsible for rea-
ding X3D files and writing the graph in XML format. X3DHolder
is the class responsible for the use of the structure in an asp.net
environment.

3.3 ObjectSync
This is the package responsible for synchronization of multiple ob-
jects across the network graph. To use ObjectSync it is only neces-
sary that the target object be of type ObjectSync or inherit it and it
be recorded in the sync manager. The interface defines which pro-
perties are synchronized and allows the synchronization shooting
by a single function call. The importance of this library is that it
5http://unity3d.com/



handles the entire network layer and makes it very simple to make
synchronization.

3.4 DWebServer
Library responsible for creating a server. It only receives the syn-
chronization and forwards it to other clients. The main feature is
that it makes use of classes contained in ObjectSync that in turn
has capabilities to forward synchronizations. It keeps a copy of the
graph itself. Remember that synchronization is always made from
client to server.

3.5 Unity Render
Unit Redender is a plug-in which lets you use the X3D graph within
the Unity3D environment. It creates Unity objects through repre-
sentations of the X3D and keeps them synchronized with the ob-
jects of the graph.

3.6 Util
This package contains code for internal use of the toolkit, such as
conversions and other code reused within the toolkit.

3.7 Unity WebPlayer
Executable scripts developed for DWeb3D, to serve as a demons-
tration of the interaction of the plug-in with the Unity game engine
and of how to put the plug-in to work. The WebPlayer will be used
as a substitute for a browser.

4. IMPLEMENTATION OF THE GOALS IN
DWEB3D

In order to illustrate the suitability of the toolkit to the proposed
objectives, it is presented how it can solve existing problems and
how its structure was designed for these cases.

4.1 Collaboration
To meet the goal of facilitating collaboration, some factors are im-
portant:

• Facilitate the creation of a server.

• Enable the synchronization of the positions of objects between
the views of several clients.

• Enable the creation of new objects via the client interface.

To create a basic server, the necessary code is simply:

public void StartDefaultServer()
{

// Create the server on port 1717
SceneServer s = new SceneServer (1717);
// Setting and creating the basic scene
s.SceneGraph X3DRepresentation = new ();
s.SceneGraph.CreateBasicScene ();
// Setting this to be the default server
s.IsDefault = true;
// Adding the server to the scene manager
DefaultServer = s;
SceneServers.Add (s);

}

It may be noted that there are four operations in the code above.
Creation of the object, definition of the default scene (an empty

scene), definition that it is the default server (we may have several
on the same machine) and registration of the server in the scene
manager.

The various low-level functions like create socket, process thre-
ads, and create loops of reading required for a server are embedded
in DWeb3D and therefore the developer doesn’t need to deal with
them. Thus the size and complexity of the code produced is greatly
reduced.

To deal with the synchronization ObjetSync module was created.
To use it, it is simply necessary that objects to be synchronized im-
plement a specific interface. This interface lets you define which
fields we want to be synchronized on the object and thus can pro-
mote the timing by a simple function call as shown in Figure 2.

Figure 2: Exemplifying the synchronization process

A small snippet of code showing this can be seen below:

// Creating a transformable object
var t = new Transform ();
t.LoadFromReader (XmlReader);
// Setting the object as a ISyncableISyncable
tmp = t;
// Defining a valid NetId
tmp.NetId = SyncManager.Instance.NextNetID;
// Registering the object manager
SyncManager.Instance.Register (ref tmp);

With this code you get the object registration. In case of objects
from the graph that step is not necessary, since they are already
registered in their creation. In this case, just the following line is
needed:

SyncManager.Instance.Syncronize()

4.2 Persistence and load
Persistence is also done through the mechanisms that allow colla-
boration, but with a new engine, X3DHolder. As it is responsible
for the exposure of the object in a web environment, it records a
cookie that identifies who the user is. It also reads the user’s cookie
if it exists, and by the UserManager class, detects who the user is
on the server and allows it to recover the characteristics of his/her
last visit.



4.3 Interaction with other applications
In order to interact with other applications, an X3D application ne-
eds a mechanism that exposes the events within the scene to other
applications. Two ways are identified:

1 - To program using ECMAScript calls to external mechanisms
such as webservices, which are programmed with the desired logic.

2 - To program an X3D viewer that allows the addition of scripts to
events of the graph (a node access, modification of some property,
etc.) and triggers.

The first option requires that the other application be able to recei-
ves instructions from the 3D browser, what it is not always possible
because some applications do not have the code open for modifica-
tion, and the creation of an intermediate application can be more
complex. For DWeb3D it was decided to follow the second option
and for this UnityRender was developed. This module converts the
X3D graph into a Unity 3D graph, so that you can publish a web
viewer. This viewer can have more plug-ins in the form of scripts in
C# that may come from the graph. Figure 3 illustrates its operation.

Figure 3: Scheme illustrating the operation of the renderer.

With this plug-in the interaction is achieved, because the scripts can
change the graph, which in turn synchronizes with objetSync and
changes the graph on the server and this in turn may have program-
med code to interact with other applications. Figure 4 illustrates
the proposed timing scheme.

4.4 Interaction with the Web GUI
Although it is also a form of interaction with other applications, the
web GUI has a special role because it is the environment where the
X3D scene stays.

Currently one of the fastest growing fields in the web are the RIAs
(Rich Internet Application) [15], which are applications that ena-
ble a richer interface with the user. Evolution of browsers and per-
sonal computers has allowed many of the applications originally
made to run on desktop migrate to the web. The applications most

Figure 4: Timing scheme.

commonly reach this goal through application of Ajax techniques
(Asynchronous JavaScript And XML) [16]. Thus, DWeb3D will
make use of Ajax techniques to achieve rich interaction with the
3D application.

Ajax methodology is the use of technologies such as JavaScript and
XML, provided by browsers to render pages more interactive with
the user, making use of asynchronous requests for information.
Ajax is an initiative to build more dynamic and creative web ap-
plications. Ajax is not a single technology, there are several known
technologies working together, each doing its part by offering new
features. Ajax incorporates in its model:

• Standards-based presentation using XHTML and CSS.

• Dynamic display and interaction using the DOM.

• Data exchange and manipulation using XML and XSLT.

• Asynchronous data retrieval using XMLHttpRequest.

• JavaScript binding everything together.

Ajax3D comes to apply the same idea of the traditional Ajax for
X3D objects. Since X3D can receive scripts in ECMAScript and
exposes its features to the browser, it is possible through ECMAS-
cript and asynchronous calls to interact with X3D. With this idea
Ajax3D project was developed, providing a small library with basic
functions for this interaction.

The operation of the interaction Ajax / 3D scene can be seen in
Figure 5. The crucial point is that the server is always updated,
thereby ensuring not only the interaction with this user, but also
the change of the graph, which in turn enables the change of scene.
The role of Ajax in DWeb3D is to allow web GUI components to
communicate seamlessly with the scene.

5. CASE STUDIES
As a way to organize the tests and demonstrations small test pro-
jects were created, each one focused on a specific feature. These
features were designed to validate the possible uses of DWeb3D,
demonstrating that the complexity of the development can be hid-
den in the code of the toolkit.



Figure 5: Cycle interaction Ajax / 3D scene.

5.1 Scene Graph
The main functions available in the X3D Model package, which
encapsulates the graph and the structure of X3D are:

• Load an X3D file.

• Exposure of the structure of the scene.

• Rendering a changed structure again to a file.

The load is obtained through a recursive function that reads each
item of the X3D file and transforms it into an equivalent node, res-
pecting the hierarchy. To demonstrate the operation of the model
load we can observe the following piece of code:

public static void TestRead()
{

// Create object to hold classes
X3DRepresentation xrep X3DRepresentation = new ();
// Load the file
xrep.LoadFromFile ("../Samples/BeckyRoad.x3d ");
// Rendering to the screen
Console.WriteLine(xrep.RendertoX3D());

}

It may be noted that the model encapsulates the whole process of
loading and rendering necessary to handle a X3D file in .NET code.
In the end we have a hierarchical graph with all nodes of the scene.
The rendering is done in turn by an in depth recursive function as
illustrated in Figure 6.

Figure 7 illustrates the result of the rendering done by the model. It
serves as a way to show the correct loading and rendering.

Figure 6: Rendering order of the graph.

Figure 7: Rendering on Flux 3D model output.

5.2 Collaboration
To demonstrate how to code a simple application that can be colla-
borative, a demonstration is illustrated in Figure 8.

Figure 8: Two users viewing a scene.

The first task to be done is to define a server. It should be able
to accept multiple users and sync messages from them. For this
a simple scene was set that will be loaded on the server and two
clients. Then a client will modify an object and synchronize and
the second client is able to see the changes.

The code for the server is the same example in Section 4.1. For
clients the code is described below:

public void StartClient()
{



// Create the client on port 1717
Client c = new Client (1717, "127.0.0.1" ’);
// Setting and creating the basic scene
c.SceneGraph X3DRepresentation = new ();
c.SceneGraph.CreateBasicScene ();
// Registering the client
ClientManager.Add (c);

}

For the client the main difference is that it needs to know which
is the server. Once connected, client and server are transparent to
the application. Thus, the user simply makes the necessary changes
and synchronizes. It is important to note that the synchronization
starts from the client.

Finally, an object was created out of the graph so that it could simu-
late an operation of conversation between two users. The following
code shows how this works.

var chat = new Chat ();
// Defining the object as a ISyncable
// (It has to implement the interface)
ISyncable tmp = chat;
// Defining a valid netID
tmp.NetId = SyncManager.Instance.NextNetID;
// Registering the object manager
SyncManager.Instance.Register (ref tmp);
// Sending a message
chat.SendMessage ("Hello");

In the code above, function SendMessage sets a variable and then
synchronizes it. The server replicates this message, which can be
read by other clients. A similar code generated without DWeb3D
is much more extensive and difficult to understand.

5.3 Persistence and load
To obtain the persistence it is just necessary to use the X3DHolder
as a way to expose the code for the viewer. It will be responsible
for recording and retrieval of the cookie. Some of the information
saved with this is: the viewpoint of the user, states of the objects
that were manipulated in the scene, any previous chat did among
the users. You can expose the X3DHolder through the following
code.

<%@ Register NameSpace="DWeb3D.X3DHolder"
TagPrefix="X3DH" Assembly="X3DHolder" %>

<X3DH:X3DHolder ID="XHolder" runat="server">
</X3DH:X3DHolder>

In this aspect the demo application illustrates how to use the second
level of persistence, which is the persistence to disk. For this, the
server received a Save () method as shown in the code below:

public void StartDefaultServer()
{

// Create the server on port 1717
SceneServer s = new SceneServer (1717);
// Defining and creating the basic scene
s.SceneGraph X3DRepresentation = new ();
s.SceneGraph.CreateBasicScene ();
// Saving to disk
s.Save ();

}

The code above creates a server, sets a scene and calls the default
method to save it. This method will verify the existence of a stan-
dard database on disk, if it does not exist, it will be created. After

Figure 9: Unity after 3D rendering.

that db4o will call the library to be responsible for dealing with
the complexities of storing objects to disk. The toolkit makes db4o
startup, verifying the existence and basic settings of the library, as
well as finding the correct node in the graph, so that the storage can
be successfully done.

Without the use of the toolkit, it would be necessary to deal with
the initialization of db4o and the verification of the existence of a
database, besides having to search the correct node in the graph to
save it successfully.

5.4 Interaction with other applications
An example of how we can interact with other application is the
server, because through him the X3D scene is interacting with the
.NET code on a server that itself is a different application. Yet
another example was developed in the form of Unity3D Render.
This is a code that can be called in the graphics engine and so the
graph is synchronized there. Thus we can add specific behaviors
through scripts of the Unity3D nodes.

To demonstrate the operation of the plug-in, a simple scene with
only one cylinder, a cube, a viewport and some transformations
will be used. The process of rendering in Unity3D is presented
Figure 9.

In Figure 9 it can be noted that the nodes we created are selectable
and they have the characteristics of the nodes of the X3D scene.
The process was a conversion of the X3D model graph to the graph
of Unity. Another interesting feature of the graphics engine is that
it allows scripts to attach scripts to nodes. Using this technique you
can add scripts that respond to specific events as a click of the node
for example.

To get this same result without the use of DWeb3D it would be
necessary to write a conversion method from X3D to the the graph
of Unity. This method would have to contain: an XML reader,
an interpreter, a function to transform this structure into something
that the program could understand, and a function to transform this
understandable structure into the structure of Unity.

The DWeb3D approached the problem of interaction with other ap-
plications focusing on integration with Unity3D. For a possible in-
teraction with other graphics engine, the DWeb3D implements a
scheme for rendering plug-ins. This means, simply rewriting the
rendering code, you can enjoy all the other mechanisms of the to-



olkit like graph handling, among others.

5.5 Interaction with the Web GUI
The web GUI is another application. In this case we are dealing
with a more specific case of integration. However, as the web GUI
is the environment that hosts the 3D scene, the integration is even
more important. Their integration can be made via Ajax calls in
common .NET code running on the server. This code will be on the
same environment as the X3D server, and through SceneServers
manager may have access to the graph server and change it thus
affecting the scene. To illustrate this possibility, the following code
is presented.

using System;
using DWeb3D.Model;
namespace TestWebApp
{
public partial class _Default : System.Web.UI.Page
{
// Create the storage object
private X3DRepresentation x3dm;
void Page_Load(object sender, EventArgs e)
{

x3dm = new X3DRepresentation();
x3dm.LoadFromFile("..\\Samples\\Example.x3d");
XHolder.Representation = x3dm;

}
// Code called by the button to raise the box
void BtRaiseBox_Click(object s, EventArgs e)
{

((Box)XHolder.Representation.Scene.Nodes[1]).Size
+= new Vector3D(2, 2, 2);

}
}

}

In the above example, when the user clicks the raise box button the
code go to the storage place and adds 2 to all values. To obtain
the same results without the DWeb3D, the simplest way would be
to develop an ECMAScript code that via the browser API could
access the node and make the change.

6. CONCLUSIONS
This research proposes a toolkit to speed up the development of
X3D applications. We also addressed some weaknesses detected
in X3D, especially in direct comparison with other 3D technolo-
gies on the web. The issues addressed were: collaboration, persis-
tence, interaction with other applications and interaction with the
web GUI.

Regarding collaboration, we developed a client/server mechanism
to enable message exchange and scene synchronization. Regar-
ding persistence, we created a server control to manage cookies
and users, allowing the persistence of camera positions between
user accesses to the file. Still related to persistence, we develo-
ped a mechanism to save the scene in disk. For interacting with
other applications, the messagem exchange mechanism is used, in
a way that it is possible to trigger programmed behaviours from
scene events. Finally, for the interaction with the Web GUI, Ajax
methods were used to access the scene graph.

The development of the toolkit was motivated by the idea that by
simplifying the lifecycle of application development for develo-
pers, we can accelerate the acceptance of technology. Application
tests have shown us, even empirically, that this toolkit can facilitate
the process of developing applications that have the requirement of
the features proposed.

We saw examples in this paper showing how the use of DWeb3D
reduces the amount of code needed to obtain 3D applications. This
code reduction not only facilitates the process of initial develop-
ment, but also brings a number of advantages for those who need
to develop these codes. By having a lower development cost, the
applications’ risk decreases. Another positive aspect is the possibi-
lity of freeing developers to focus on the goals of their applications.
This occurs because if the developers do not need to deal with the
basic layers, which are laborious and complex, they can focus on
desired features in its software.

The DWeb3D is itself a useful tool to facilitate the development
of complex X3D applications and fits the principles cited above,
where a toolkit promotes the use of technology by simplifying de-
velopment.

7. ACKNOWLEDGMENTS
This work has been partially supported by CNPq 557.128/2009-9
and FAPERJ E-26/170028/2008. Alberto Raposo also receive grant
from FAPERJ.

8. REFERENCES
[1] J. Allaire. Macromedia Flash MX next-generation rich client.

Whitepaper, Adobe, 2002.
www.adobe.com/devnet/flash/whitepapers/richclient.pdf.

[2] J. Behr, P. Dähne, and M. Roth. Utilizing X3D for immersive
environments. In Web3D ’04: Proceedings of the ninth
international conference on 3D Web technology, pages
71–78, New York, NY, USA, 2004. ACM.

[3] C. Bouras, C. Tegos, V. Triglianos, and T. Tsiatsos. X3D
Multi-user Virtual Environment Platform for Collaborative
Spatial Design. In ICDCSW ’07: Proceedings of the 27th
International Conference on Distributed Computing Systems
Workshops, page 40, Washington, DC, USA, 2007. IEEE
Computer Society.

[4] R. Dachselt and E. Rukzio. Behavior3D: an XML-based
framework for 3D graphics behavior. In Web3D ’03:
Proceedings of the eighth international conference on 3D
Web technology, pages 101–ff, New York, NY, USA, 2003.
ACM.

[5] J. Dehaan. Macromedia Flash MX 2004: Training from the
Source. Macromedia Press, 2003.

[6] Y. Doi and K. Kagawa. An X3D generator plug-in for Eclipse
in a Web-based Educational System for Programming. In
Proceedings of World Conference on Educational
Multimedia, Hypermedia and Telecommunications, pages
2523–2528, Chesapeake, VA: AACE, 2006. EDMEDIA.

[7] R. J. dos Santos, A. L. Battaiola, and R. P. Dubiela. Aspectos
Fundamentais da Criação de jogos em Shockwave 3D.
WJogos / SBGames 2004, Simpósio Brasileiro de Jogos de
Computador e Entretenimento Digital, 2004.

[8] M. E. Frincu and D. Petcu. Remote Control for Graphic
Applications. In Symbolic and Numeric Algorithms for
Scientific Computing, International Symposium on, pages
304–309, Los Alamitos, CA, USA, 2007. IEEE Computer
Society.

[9] S. Greenberg. Toolkits and interface creativity. Multimedia
Tools Appl., 32(2):139–159, 2007.

[10] R. Grehan. Complex Object Structures, Persistence, and
db4o. Whitepaper, DBO, 2005.
http://www.odbms.org/download/006.01/Grehan/Complex/
Object/ Structures/May/2005.pdf.



[11] J. Huang and B. Cheng. Interactive Visualization for 3D
Pipelines Using Ajax3D. In Networking and Digital Society,
International Conference on, pages 21–24, Los Alamitos,
CA, USA, 2009. IEEE Computer Society.

[12] S. Jourdain, J. Forest, C. Mouton, B. Nouailhas, G. Moniot,
F. Kolb, S. Chabridon, M. Simatic, Z. Abid, and L. Mallet.
ShareX3D, a scientific collaborative 3D viewer over HTTP.
In Web3D ’08: Proceedings of the 13th international
symposium on 3D web technology, pages 35–41, New York,
NY, USA, 2008. ACM.

[13] A. Lugmayr and S. Kalli. Using Metadata-based SVG and
X3D Graphics in Interactive TV . Springer London, 2005.

[14] T. Parisi. Ajax3D: The Open Platform for Rich 3D Web
Applications. Whitepaper, Media Machines, Inc, 2006.

[15] Y. S. Park, J. H. Lee, H. R. Choi, H. S. Kim, J. U. Jung, and
J. Y. Park. Development of an RIA-based user interface for
promotion of effectiveness in marine transportation. In
ACS’08: Proceedings of the 8th conference on Applied
Computer Science, pages 366–372, Stevens Point,
Wisconsin, USA, 2008. World Scientific and Engineering
Academy and Society (WSEAS).

[16] R. Riordan. Head First Ajax. O’Reilly Media, 2008.
[17] R. Turkowski. Web3D Consortium X3D Revision to add

Physics, Particle Systems, UI Enhancements, Realistic
Motion. Whitepaper, Media Machines, Inc. Disponível em:
http://www.web3d.org/images/uploads/
pdfs/Web3D_Consortium-X3D_Revision_1.pdf,
2006.

[18] Web3D Consortium. Virtual Reality Modeling Language.
Available at:
http://www.web3d.org/x3d/specifications/
vrml/ISO-IEC-14772-VRML97/, 1997.

[19] Web3D Consortium. Extensible 3D (X3D). Available at:
http://www.web3d.org/x3d/specifications/
ISO-IEC-19775-1.
2-X3D-AbstractSpecification/, 2008.

[20] J. C. Weber and T. Parisi. An Open Protocol for Wide-area
Multi-user X3D. Proceedings of the twelfth international
conference on 3D Web technology, pages 133–136, 2007.


