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Abstract: In the Semantic Web, domain ontologies can provide the necessary support for linking together a large 

number of heterogeneous data sources. In our proposal, these data sources are describe as local ontologies 

using an ontology language. Then, each local ontology is rewritten as an application ontology, whose 

vocabulary is restricted to be a subset of the vocabulary of the domain ontology. Application ontologies 

enable the identification and the association of semantically corresponding concepts, so they are useful for 

enhancing tasks like data discovery and integration. The main contribution of this work is a strategy to 

automatically generate such application ontologies and mappings, considering a set of local ontologies, a 

domain ontology and the result of the matching between each local ontology and the domain ontology.  

1 INTRODUCTION 

The Web is a complex and vast repository of 

information that is often stored in heterogeneous and 

distributed data sources. Problems that might arise 

due to heterogeneity of the data are already well 

known within the database community: syntactic 

heterogeneity and semantic heterogeneity.  

In nearly all recent researches on data integration, 

ontologies provide a possible approach to address the 

problem of semantic heterogeneity. In general, two 

architectures for data integration can be identified: two-

level and three-level ontology-based architectures.  

The main components of the two-level 

architecture (Figure 1(a)) are: the domain ontology 

(DO); the local ontologies (LO), which describe the 

data sources using an ontology language; and the 

mapping that specifies the correspondences between 

the local ontologies and the domain ontology (LO-

DO mappings). The work presented in (Calvanese et 

al., 2007) adopts this architecture. The main 

components of the three-level architecture (Figure 

1(b)) are: the domain ontology (DO); the local 

ontologies (LO); the application ontologies (AO), 

which rewrite the local ontologies using a subset of 

the vocabulary of the domain ontology; the mapping 

that specifies the correspondences between the 

application ontologies and the domain ontology 

(AO-DO mappings); and the mapping that specifies 

the correspondences between the local ontologies 

and the application ontologies (LO-AO mappings). 

The work of (Lutz, 2006) adopts this architecture. 
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Figure 1: (a) Two-Level Ontology-Based Architecture.  

(b) Three-Level Ontology-Based Architecture.   

The main problems that concern to both 

architectures are: (i) how to specify the mappings; 

and (ii) how to use the mappings to answer correctly 

the queries posed on the domain ontology. In the 

two-level architecture, the domain ontology is only 



 

used for specifying the mediated schema. So the user 

has to define, which we call heterogeneous 

mappings, between entities of the local ontologies 

and the domain ontology, as such ontologies do not 

share the same vocabulary and also because of the 

structural heterogeneity. In the three-level 

architecture, the domain ontology is used for both 

specifying the mediated schema and as a shared 

vocabulary. As the application ontologies are subsets 

of the domain ontology, the user can define 

homogeneous mappings between these ontologies.  
In our approach, application ontologies are used 

to divide the definition of the mappings into two 
stages: AO-DO mappings and LO-AO mappings. 
We use mediated mappings to define the classes and 
properties of the domain ontology in terms of the 
vocabularies of the application ontologies. The AO-
DO and the mediated mappings are represented 
using a Description Logics (DL) formalism 
(Calvanese et al. 1998) to take advantage of 
ontological reasoning tasks. Since, we need to 
represent object restructuration; the LO-AO 
mappings are expressed in an extended rule-based 
formalism to overcome DL limitations. 

This paper is organized as follows. Section 2 

gives some definitions and presents an example.  

Section 3 presents concepts about ontology 

matching. Section 4 describes our approach for 

generating application ontologies and mappings.  

2 BASIC DEFINITIONS 

We use extralite schemas (Leme et al., 2009) that 

supports the definition of classes and properties, and 

that admit domain and range constraints,  subset and 

disjoint constraints, minCardinality and 

maxCardinality constraints, with the usual meaning. 

We present an example, adapted from (Casanova 

et al., 2009) of a virtual store mediating access to 

online booksellers. The user provides a domain 

ontology, describing data about virtual sales of 

products; and two local ontologies describing data 

about Amazon and eBay virtual stores. We use the 

namespace prefixes “s:”, “a:” and “e:” to refer to the 

vocabulary of Sales domain ontology (Figure 2(a)); 

Amazon and eBay local ontologies (Figure 2(b)). 

3 OWL SCHEMA MATCHING 

Ontology matching is the process of finding 

correspondences between semantically related 

entities of different ontologies (Euzenat and 

Shvaiko, 2000). In the following, we present the two 

main steps of our strategy to the generation of the 

application ontologies, adapted from (Leme et al., 

2009): (1) vocabulary matching, which generates the 

alignment between entities of two different 

ontologies; and (2) concept mapping, which induces 

the mapping rules from the ontology alignment.  

3.1 Vocabulary Matching 

Let OS and OT be two ontologies, and VS and VT be 

their vocabularies, respectively. Let CS and CT be the 

sets of classes and PS and PT the sets of datatype or 

object properties in VS and VT, respectively. A 

contextualized vocabulary matching (Leme et al., 

2009) between the source ontology OS and the target 

ontology OT can be represented by a finite set Q of 

quadruples (v1, e1, v2, e2) such that: (i) if  (v1, v2) ∈ 

CS × CT, then e1 and e2 are the top class ⊤; and (ii) if 
(v1, v2) ∈ PS × PT, then e1 and e2 are classes in CS and 

CT that must be subclasses of the domains, or the 

domains themselves, of v1 and v2, respectively. 

If (v1, e1, v2, e2) ∈ Q, we say that: (i) Q matches 

v1 with v2 in the context of e1 and e2; (ii) ei is the 

context of vi; and (iii) (ei, vi) is a contextualized 

concept, for i = 1, 2.  

Even though we do not focus on how these 

correspondences are created, we are aware that the 

correspondences obtained using an existing tool are 

often incomplete or incorrect; therefore, a user 

interaction might be necessary. Figures 3(a) and 3(b) 

show the vocabulary matching.  

 
Figure 2: (a) Domain Ontology; (b) Local Ontologies. 



3.2 Concept Mapping  

In this work, concept mapping is induced from the 

vocabulary matching between ontologies. In general, 

a concept mapping  from OS into OT is a set of 

expressions that define concepts of OT in terms of 

concepts of OS, in such a way that they semantically 

correspond to each other (Leme et al., 2009).  

Concept mappings are usually represented by 

formalisms that deal with homogeneous mappings. 

DL, for example, can be used for inferring implicit 

taxonomic relationships between concepts or between 

concepts and individuals. However, it presents some 

limitations: DL cannot express ternary predicates and 

it does not define suitable mechanisms for the explicit 

building of object identifiers (OIDs). As both features 

are important in our approach, we use a Datalog 

variant with OID-invention (Hull and Yoshikawa, 

1990) to represent concept mappings. 

In the following definition consider that: (i) 

every variable v is a term; (ii) every constant c is a 

term; (iii) if t1, …, tn are terms, and f is an n-ary 

function symbol, then f(t1, …, tn) is a term. 

Let OS and OT be two ontologies and R be a rule 

language. A concept mapping is specified through a 

set of mapping rules, each one of the form: β1(w1)  

α1(v1),…, αm(vm) where α1(v1),…, αm(vm), called the 

body of the mapping, is an atom or a atom 

conjunction, where an atom αi can be an atomic 

concept or an atomic role occurring in the source 

ontology OS, and vi is a sequence of terms; and 

β1(w1), called the head of the mapping, is an atom 

that can be an atomic concept or an atomic role 

occurring in the target ontology OT, and w1 is a 

sequence of terms. This rule-based formalism 

supports Skolem functions (Hull and Yoshikawa, 

1990) for the creation of OIDs of entities in OT from 

one or more entities of OS. In our work, the Skolem 

functions are simply used as URIref generators.  

4 GENERATING APPLICATION 

ONTOLOGIES AND MAPPINGS 

Given a local ontology LO, a domain ontology DO, 

a set of quadruples representing the vocabulary 

matching between LO and DO, our algorithm 

generates: (i) classes and properties of AO; (ii) a set 

of LO-AO mapping rules; and (iii) a set of mediated 

mappings. The algorithm checks if each quadruple 

satisfies one of the conditions of Table 1, in order to 

apply the corresponding actions. It follows the order 

of the cases listed in this table, and it is 

deterministic, as the number of quadruples is finite. 

We now show the results obtained from the 

execution of our algorithm. Figure 4 shows the 

application ontologies. We use the namespace 

prefixes “ap:” and “ep:” to refer to the vocabularies 

of Amazon and eBay application ontologies, 

respectively.  
 

Amazon Sales 

a:title a:Book s:title s:Book 

a:pub a:Book s:pub s:Book 

a:Book ⊤ s:Book ⊤ 

a:title a:Music s:title s:Music 

a:Music ⊤ s:Music ⊤ 

a:name a:Publ s:name s:Publ 

a:address a:Publ s:address s:Publ 

a:Publ ⊤ s:Publ ⊤ 

Figure 3(a): Vocabulary matching between Amazon local 

ontology and Sales domain ontology. 

eBay Sales 

e:title e:Product s:title s:Product 

e:Product ⊤ s:Product ⊤ 

e:publisher e:Product s:name s:Publ 

Figure 3(b): Vocabulary matching between eBay local 

ontology and Sales domain ontology.  

 

Figure 4: Application Ontologies. 

#1: ap:Book(b)  a:Book(b)  

#2: ap:Product(b)  a:Book(b) 

#3: ap:Music(m)  a:Music(m) 

#4: ap:Product(m)  a:Music(m) 

#5: ap:Publ(p)  a:Publ(p)  

#6: ap:title(b,t)  a:title(b, t), a:Book(b) 

#7: ap:pub(b,p)  a:pub(b, p) 

#8: ap:title(m,t) a:title(m, t), a:Music(m)  

#9: ap:name(p, n)  a:name(p, n) 

#10: ap:address(p,a) a:address(p, a) 

Figure 5(a): Mapping rules from the Amazon local 

ontology to the Amazon application ontology. 

#1:ep:Book(p)  e:Product(p),e:type(p,´book´) 

#2:ep:Product(p) e:Product(p),e:type(p,´book´) 

#3:ep:Music(p) e:Product(p),e:type(p,´music´) 

#4:ep:Product(p) e:Product(p),e:type(p,´music´) 

#5:ep:title(p,t) e:title(p,t),e:type(p,´book´) 

#6:ep:title(p,t) e:title(p,t),e:type(p,´music´) 

#7:ep:Publ(fpubl(n))e:publisher(b,n),e:type(b,´book´) 

#8:ep:name(fpubl(n),n)e:publisher(b,n),e:type(b,´book´) 

#9:ep:pub(b,fpubl(n)) e:publisher(b,n),e:type(b,´book´) 

Figure 5(b): Mapping rules from the eBay local ontology 

to the eBay application ontology. 



 

Product ≡ ap:Product ⊔ ep:Product      

title ≡ ap:title ⊔ ep:title   

Book ≡ ap:Book ⊔ ep:Book  ... 

Figure 6: Some of the mediated mappings. 

Figures 5(a) and 5(b) show the LO-AO rules 

induced from the vocabulary matching of Figures 

3(a) and 3(b). In Figure 5(b), the function fpubl is 

used to add an object of class ep:Publ and the 

properties ep:name and ep:pub in the application 

ontology. Figure 6 presents some mediated 

mappings, which allow the definition of a class 

(property) of the domain ontology through a unique 

axiom, composed by unions of classes (properties) 

of the application ontologies. They can be used for 

unfolding a query submitted over the domain 

ontology directly over the application ontologies 

Table 1: From Vocabulary Matching to AO, LO-AO, AO-DO and mediated mappings. 

  Q = set of quadruples qi (lo:v1, lo:e1, do:v2, do:e2) 
  C  = set of classes of AO and  P  = set of properties of AO 

M’ =  set of LO-AO mapping rules 

M_concept  =  set of mediated mappings of this concept 

Condition analyzed for each qi Actions 

Case 1: lo:v1 and do:v2 are classes 

 C := C U {ao:v2};  M_v2 := M_v2 + “⊔”+ {ao:v2};  

 M’ := M’ U {ao:v2(x)  lo:v1(x)};   

 for each superclass S of do:v2 do 

      M’ := M’ U {ao:S(x)  lo:v1(x)};   

       if (ao:S  C) then 

           C:= C U {ao:S};  M_S:= M_S + “⊔”+ {ao:S}; 
Case 2: lo:v1 and do:v2 are properties. Let lo:e1 and do:e2 be the contexts of lo:v1 and do:v2, respectively: 

Case 2.1: Q matches lo:e1 with do:e2 and do:v2 belongs to 

the class do:e2 or to a superclass S of the class do:e2. 

  P  := P  U {ao:v2};  M_v2:= M_v2 + “⊔”+ {ao:v2}; 

 M’ := M’ U {ao:v2(x, y)  lo:v1(x, y), lo:e1(x)};   

Case 2.2: Q does not match lo:e1 with do:e2 but there is a 

property path (lo:pk1, lo:pk2, …, lo:pkm) in the source 

ontology corresponding to the alignment between lo:v1 and 

do:v2. 

  P := P  U {ao:v2}; M_v2:= M_v2 + “⊔”+ {ao:v2};  

 M’ := M’ U {ao:v2(x, y)  lo:pk1(x, x1), lo:pk2(x1, x2),…,   

lo:pkm(xm-1,z), lo:v1(z,y)};    

Case 2.3: Q does not match lo:e1 with do:e2 and there is no 

property path that can align properties lo:v1 and do:v2, but 

the user can identify an equivalence between them: 

 C := C U {ao:e2};  M_e2:= M_e2 + “⊔”+ {ao:e2};   

 P := P  U {ao:v2}; M_v2:= M_v2 + “⊔”+ {ao:v2};   

Case 2.3.1: The user proposes a selection condition 

identifying a property lo:pk in the source ontology that 

allows the alignment between properties lo:v1 and do:v2 and 

contexts lo:e1 and do:e2. 

 

 M’ := M’ U {ao:e2(x)  lo:e1(x), lo:pk(x, „select value‟)};  

 M’ := M’ U {ao:v2(x, y)  lo:v1(x,y), lo:pk(x, „select value‟)};  

 for each superclass S of do:e2 do 

        M’ := M’ U {ao:S(x)  lo:e1(x), lo:pk(x, „select value‟)};  

 if (ao:S  C) then 

     C := C U {ao:S}; M_S:= M_S + “⊔”+ {ao:S};    

Case 2.3.2: The user proposes a restructuring of information 

in the enrolled ontologies creating a function f that allows 

the alignment between properties lo:v1 and do:v2 (y is an 

inverse functional property passed as argument to f). 

 M’ := M’ U {ao:e2(f(y))  lo:v1(x,y)};  

 M’ := M’ U {ao:v2(f(y), y)  lo:v1(x,y)};  

 P := P  U {ao:p2}; M_p2:= M_p2 + “⊔”+  {ao:p2};   

 M’ := M’ U {ao:p2 (x, f(y))  lo:v1(x,y)};  
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