
TOWARDS AUTOMATIC GENERATION OF APPLICATION

ONTOLOGIES

Eveline R. Sacramento, Vânia M. P. Vidal, José Antônio F. de Macêdo, Bernadette F. Lóscio,

Fernanda Lígia R. Lopes, Fernando Lemos
Department of Computing, FederalUniversity of Ceará, Fortaleza-CE, Brazil

{eveline, vvidal, jose.macedo, bernafarias, fernanda.ligia, fernandocl}@lia.ufc.br

Marco A. Casanova
Department of Informatics, PUC-Rio, Rio de Janeiro-RJ, Brazil

casanova@inf.puc-rio.br

Keywords: semantic heterogeneity, ontologies, ontology matching, data integration, schema mappings, rules.

Abstract: In the Semantic Web, domain ontologies can provide the necessary support for linking together a large

number of heterogeneous data sources. In our proposal, these data sources are describe as local ontologies

using an ontology language. Then, each local ontology is rewritten as an application ontology, whose

vocabulary is restricted to be a subset of the vocabulary of the domain ontology. Application ontologies

enable the identification and the association of semantically corresponding concepts, so they are useful for

enhancing tasks like data discovery and integration. The main contribution of this work is a strategy to

automatically generate such application ontologies and mappings, considering a set of local ontologies, a

domain ontology and the result of the matching between each local ontology and the domain ontology.

1 INTRODUCTION

The Web is a complex and vast repository of

information that is often stored in heterogeneous and

distributed data sources. Problems that might arise

due to heterogeneity of the data are already well

known within the database community: syntactic

heterogeneity and semantic heterogeneity.

In nearly all recent researches on data integration,

ontologies provide a possible approach to address the

problem of semantic heterogeneity. In general, two

architectures for data integration can be identified: two-

level and three-level ontology-based architectures.

The main components of the two-level

architecture (Figure 1(a)) are: the domain ontology

(DO); the local ontologies (LO), which describe the

data sources using an ontology language; and the

mapping that specifies the correspondences between

the local ontologies and the domain ontology (LO-

DO mappings). The work presented in (Calvanese et

al., 2007) adopts this architecture. The main

components of the three-level architecture (Figure

1(b)) are: the domain ontology (DO); the local

ontologies (LO); the application ontologies (AO),

which rewrite the local ontologies using a subset of

the vocabulary of the domain ontology; the mapping

that specifies the correspondences between the

application ontologies and the domain ontology

(AO-DO mappings); and the mapping that specifies

the correspondences between the local ontologies

and the application ontologies (LO-AO mappings).

The work of (Lutz, 2006) adopts this architecture.

DO

LO1 LOn...

DO

LO1 LOn...

LO1 LOn...
Application

Ontologies

Domain

Ontologies

Local

Ontologies

LO-DO

Mappings

AO-DO

Mappings

LO-AO

Mappings

Shared Vocabulary

Mediated

Mappings

(a) (b)

Figure 1: (a) Two-Level Ontology-Based Architecture.

(b) Three-Level Ontology-Based Architecture.

The main problems that concern to both

architectures are: (i) how to specify the mappings;

and (ii) how to use the mappings to answer correctly

the queries posed on the domain ontology. In the

two-level architecture, the domain ontology is only

used for specifying the mediated schema. So the user

has to define, which we call heterogeneous

mappings, between entities of the local ontologies

and the domain ontology, as such ontologies do not

share the same vocabulary and also because of the

structural heterogeneity. In the three-level

architecture, the domain ontology is used for both

specifying the mediated schema and as a shared

vocabulary. As the application ontologies are subsets

of the domain ontology, the user can define

homogeneous mappings between these ontologies.
In our approach, application ontologies are used

to divide the definition of the mappings into two
stages: AO-DO mappings and LO-AO mappings.
We use mediated mappings to define the classes and
properties of the domain ontology in terms of the
vocabularies of the application ontologies. The AO-
DO and the mediated mappings are represented
using a Description Logics (DL) formalism
(Calvanese et al. 1998) to take advantage of
ontological reasoning tasks. Since, we need to
represent object restructuration; the LO-AO
mappings are expressed in an extended rule-based
formalism to overcome DL limitations.

This paper is organized as follows. Section 2

gives some definitions and presents an example.

Section 3 presents concepts about ontology

matching. Section 4 describes our approach for

generating application ontologies and mappings.

2 BASIC DEFINITIONS

We use extralite schemas (Leme et al., 2009) that

supports the definition of classes and properties, and

that admit domain and range constraints, subset and

disjoint constraints, minCardinality and

maxCardinality constraints, with the usual meaning.

We present an example, adapted from (Casanova

et al., 2009) of a virtual store mediating access to

online booksellers. The user provides a domain

ontology, describing data about virtual sales of

products; and two local ontologies describing data

about Amazon and eBay virtual stores. We use the

namespace prefixes “s:”, “a:” and “e:” to refer to the

vocabulary of Sales domain ontology (Figure 2(a));

Amazon and eBay local ontologies (Figure 2(b)).

3 OWL SCHEMA MATCHING

Ontology matching is the process of finding

correspondences between semantically related

entities of different ontologies (Euzenat and

Shvaiko, 2000). In the following, we present the two

main steps of our strategy to the generation of the

application ontologies, adapted from (Leme et al.,

2009): (1) vocabulary matching, which generates the

alignment between entities of two different

ontologies; and (2) concept mapping, which induces

the mapping rules from the ontology alignment.

3.1 Vocabulary Matching

Let OS and OT be two ontologies, and VS and VT be

their vocabularies, respectively. Let CS and CT be the

sets of classes and PS and PT the sets of datatype or

object properties in VS and VT, respectively. A

contextualized vocabulary matching (Leme et al.,

2009) between the source ontology OS and the target

ontology OT can be represented by a finite set Q of

quadruples (v1, e1, v2, e2) such that: (i) if (v1, v2) ∈

CS × CT, then e1 and e2 are the top class ⊤; and (ii) if
(v1, v2) ∈ PS × PT, then e1 and e2 are classes in CS and

CT that must be subclasses of the domains, or the

domains themselves, of v1 and v2, respectively.

If (v1, e1, v2, e2) ∈ Q, we say that: (i) Q matches

v1 with v2 in the context of e1 and e2; (ii) ei is the

context of vi; and (iii) (ei, vi) is a contextualized

concept, for i = 1, 2.

Even though we do not focus on how these

correspondences are created, we are aware that the

correspondences obtained using an existing tool are

often incomplete or incorrect; therefore, a user

interaction might be necessary. Figures 3(a) and 3(b)

show the vocabulary matching.

Figure 2: (a) Domain Ontology; (b) Local Ontologies.

3.2 Concept Mapping

In this work, concept mapping is induced from the

vocabulary matching between ontologies. In general,

a concept mapping from OS into OT is a set of

expressions that define concepts of OT in terms of

concepts of OS, in such a way that they semantically

correspond to each other (Leme et al., 2009).

Concept mappings are usually represented by

formalisms that deal with homogeneous mappings.

DL, for example, can be used for inferring implicit

taxonomic relationships between concepts or between

concepts and individuals. However, it presents some

limitations: DL cannot express ternary predicates and

it does not define suitable mechanisms for the explicit

building of object identifiers (OIDs). As both features

are important in our approach, we use a Datalog

variant with OID-invention (Hull and Yoshikawa,

1990) to represent concept mappings.

In the following definition consider that: (i)

every variable v is a term; (ii) every constant c is a

term; (iii) if t1, …, tn are terms, and f is an n-ary

function symbol, then f(t1, …, tn) is a term.

Let OS and OT be two ontologies and R be a rule

language. A concept mapping is specified through a

set of mapping rules, each one of the form: β1(w1) 

α1(v1),…, αm(vm) where α1(v1),…, αm(vm), called the

body of the mapping, is an atom or a atom

conjunction, where an atom αi can be an atomic

concept or an atomic role occurring in the source

ontology OS, and vi is a sequence of terms; and

β1(w1), called the head of the mapping, is an atom

that can be an atomic concept or an atomic role

occurring in the target ontology OT, and w1 is a

sequence of terms. This rule-based formalism

supports Skolem functions (Hull and Yoshikawa,

1990) for the creation of OIDs of entities in OT from

one or more entities of OS. In our work, the Skolem

functions are simply used as URIref generators.

4 GENERATING APPLICATION

ONTOLOGIES AND MAPPINGS

Given a local ontology LO, a domain ontology DO,

a set of quadruples representing the vocabulary

matching between LO and DO, our algorithm

generates: (i) classes and properties of AO; (ii) a set

of LO-AO mapping rules; and (iii) a set of mediated

mappings. The algorithm checks if each quadruple

satisfies one of the conditions of Table 1, in order to

apply the corresponding actions. It follows the order

of the cases listed in this table, and it is

deterministic, as the number of quadruples is finite.

We now show the results obtained from the

execution of our algorithm. Figure 4 shows the

application ontologies. We use the namespace

prefixes “ap:” and “ep:” to refer to the vocabularies

of Amazon and eBay application ontologies,

respectively.

Amazon Sales

a:title a:Book s:title s:Book

a:pub a:Book s:pub s:Book

a:Book ⊤ s:Book ⊤

a:title a:Music s:title s:Music

a:Music ⊤ s:Music ⊤

a:name a:Publ s:name s:Publ

a:address a:Publ s:address s:Publ

a:Publ ⊤ s:Publ ⊤

Figure 3(a): Vocabulary matching between Amazon local

ontology and Sales domain ontology.

eBay Sales

e:title e:Product s:title s:Product

e:Product ⊤ s:Product ⊤

e:publisher e:Product s:name s:Publ

Figure 3(b): Vocabulary matching between eBay local

ontology and Sales domain ontology.

Figure 4: Application Ontologies.

#1: ap:Book(b)  a:Book(b)

#2: ap:Product(b)  a:Book(b)

#3: ap:Music(m)  a:Music(m)

#4: ap:Product(m)  a:Music(m)

#5: ap:Publ(p)  a:Publ(p)

#6: ap:title(b,t)  a:title(b, t), a:Book(b)

#7: ap:pub(b,p)  a:pub(b, p)

#8: ap:title(m,t) a:title(m, t), a:Music(m)

#9: ap:name(p, n)  a:name(p, n)

#10: ap:address(p,a) a:address(p, a)

Figure 5(a): Mapping rules from the Amazon local

ontology to the Amazon application ontology.

#1:ep:Book(p)  e:Product(p),e:type(p,´book´)

#2:ep:Product(p) e:Product(p),e:type(p,´book´)

#3:ep:Music(p) e:Product(p),e:type(p,´music´)

#4:ep:Product(p) e:Product(p),e:type(p,´music´)

#5:ep:title(p,t) e:title(p,t),e:type(p,´book´)

#6:ep:title(p,t) e:title(p,t),e:type(p,´music´)

#7:ep:Publ(fpubl(n))e:publisher(b,n),e:type(b,´book´)

#8:ep:name(fpubl(n),n)e:publisher(b,n),e:type(b,´book´)

#9:ep:pub(b,fpubl(n)) e:publisher(b,n),e:type(b,´book´)

Figure 5(b): Mapping rules from the eBay local ontology

to the eBay application ontology.

Product ≡ ap:Product ⊔ ep:Product

title ≡ ap:title ⊔ ep:title

Book ≡ ap:Book ⊔ ep:Book ...

Figure 6: Some of the mediated mappings.

Figures 5(a) and 5(b) show the LO-AO rules

induced from the vocabulary matching of Figures

3(a) and 3(b). In Figure 5(b), the function fpubl is

used to add an object of class ep:Publ and the

properties ep:name and ep:pub in the application

ontology. Figure 6 presents some mediated

mappings, which allow the definition of a class

(property) of the domain ontology through a unique

axiom, composed by unions of classes (properties)

of the application ontologies. They can be used for

unfolding a query submitted over the domain

ontology directly over the application ontologies

Table 1: From Vocabulary Matching to AO, LO-AO, AO-DO and mediated mappings.

 Q = set of quadruples qi (lo:v1, lo:e1, do:v2, do:e2)
 C = set of classes of AO and P = set of properties of AO

M’ = set of LO-AO mapping rules

M_concept = set of mediated mappings of this concept

Condition analyzed for each qi Actions

Case 1: lo:v1 and do:v2 are classes

 C := C U {ao:v2}; M_v2 := M_v2 + “⊔”+ {ao:v2};

 M’ := M’ U {ao:v2(x)  lo:v1(x)};

 for each superclass S of do:v2 do

 M’ := M’ U {ao:S(x)  lo:v1(x)};

 if (ao:S  C) then

 C:= C U {ao:S}; M_S:= M_S + “⊔”+ {ao:S};
Case 2: lo:v1 and do:v2 are properties. Let lo:e1 and do:e2 be the contexts of lo:v1 and do:v2, respectively:

Case 2.1: Q matches lo:e1 with do:e2 and do:v2 belongs to

the class do:e2 or to a superclass S of the class do:e2.

 P := P U {ao:v2}; M_v2:= M_v2 + “⊔”+ {ao:v2};

 M’ := M’ U {ao:v2(x, y)  lo:v1(x, y), lo:e1(x)};

Case 2.2: Q does not match lo:e1 with do:e2 but there is a

property path (lo:pk1, lo:pk2, …, lo:pkm) in the source

ontology corresponding to the alignment between lo:v1 and

do:v2.

 P := P U {ao:v2}; M_v2:= M_v2 + “⊔”+ {ao:v2};

 M’ := M’ U {ao:v2(x, y)  lo:pk1(x, x1), lo:pk2(x1, x2),…,

lo:pkm(xm-1,z), lo:v1(z,y)};

Case 2.3: Q does not match lo:e1 with do:e2 and there is no

property path that can align properties lo:v1 and do:v2, but

the user can identify an equivalence between them:

 C := C U {ao:e2}; M_e2:= M_e2 + “⊔”+ {ao:e2};

 P := P U {ao:v2}; M_v2:= M_v2 + “⊔”+ {ao:v2};

Case 2.3.1: The user proposes a selection condition

identifying a property lo:pk in the source ontology that

allows the alignment between properties lo:v1 and do:v2 and

contexts lo:e1 and do:e2.

 M’ := M’ U {ao:e2(x)  lo:e1(x), lo:pk(x, „select value‟)};

 M’ := M’ U {ao:v2(x, y)  lo:v1(x,y), lo:pk(x, „select value‟)};

 for each superclass S of do:e2 do

 M’ := M’ U {ao:S(x)  lo:e1(x), lo:pk(x, „select value‟)};

 if (ao:S  C) then

 C := C U {ao:S}; M_S:= M_S + “⊔”+ {ao:S};

Case 2.3.2: The user proposes a restructuring of information

in the enrolled ontologies creating a function f that allows

the alignment between properties lo:v1 and do:v2 (y is an

inverse functional property passed as argument to f).

 M’ := M’ U {ao:e2(f(y))  lo:v1(x,y)};

 M’ := M’ U {ao:v2(f(y), y)  lo:v1(x,y)};

 P := P U {ao:p2}; M_p2:= M_p2 + “⊔”+ {ao:p2};

 M’ := M’ U {ao:p2 (x, f(y))  lo:v1(x,y)};

ACKNOWLEDGEMENTS

This work was partly supported by CNPq, under
grants 301497/2006-0, 473110/2008-3 and
557128/2009-9, FAPERJ E-26/170028/2008, and by
CAPES under grant CAPES/PROCAD NF 21/2009.

REFERENCES

Calvanese, D., De Giacomo, G., Lenzerini, M., Lembo,

D., Poggi, A., Rosati, R., 2007. MASTRO-I: Efficient

Integration of Relational Data through DL Ontologies.

In: Proc. DL Workshop'07, pp. 227 – 234.

Calvanese, D., Lenzerini, M., Nardi, D., 1998. Description

Logics for Conceptual Data Modeling. In: Logics for

Databases and Information Systems. Kluwer

Academic Publisher.

Casanova, M.A., Lauschner, T., Leme, L.A.P., Breitman,

K.K; Furtado, A.L., Vidal, V. M. P., 2009. A Strategy

to Revise the Constraints of the Mediated Schema. In:

Proc. 28th Conf. on Conceptual Modeling, pp. 265-

279, Gramado, Brazil.

Euzenat, J., Shvaiko, P., 2007. Ontology Matching.

Springer, Heidelberg.

Hull, R., Yoshikawa, M., 1990. ILOG: Declarative

Creation and Manipulation of Object Identifiers. In:

Proc. VLDB 1990, pp. 455-468.

Leme, L. A. P., Casanova, M. A., Breitman, K. K.,

Furtado, A. L., 2009. Instance-based OWL Schema

Matching. In: Proc. 11th International Conf. on

Enterprise Information Systems, Milan, Italy.

Lutz, M., 2006. Ontology-based Discovery and

Composition of Geographic Information Services. Phd

Thesis, Institut für Geoinformatik.

