

Analyzing Collaboration in Software Development
Processes through Social Networks

Andréa M. Magdaleno1,3, Cláudia Werner1, Renata Araujo2,3

1Programa de Engenharia de Sistemas e Computação (PESC) – COPPE/UFRJ
Caixa Postal 68.511 – 21945-970 – Rio de Janeiro – RJ – Brasil

2Programa de Pós Graduação em Informática (PPGI) – UNIRIO

3Núcleo de Pesquisa e Prática em Tecnologia (NP2Tec) – UNIRIO
22290-240 – Rio de Janeiro – RJ – Brasil

{andrea, werner}@cos.ufrj.br, renata.araujo@uniriotec.br

Abstract. Plan-driven, agile or free/open source software are models that have
been suggested as alternatives for software development processes. Although
effective to some extent, they alone cannot fully address all the variability of
projects and organizations. In this work, it is argued that two distinct
characteristics of these models – collaboration and discipline – can be the
drivers to tailor software development processes to meet particular needs of
projects and organizations. This article focuses on the aspect of collaboration
and argues that it can be analyzed through social networks.

1. Introduction

Software organizations are continually challenged by the need to improve the quality of
software products. In this context, the assumption that the adopted software
development process directly influences the quality of the developed product [Cugola
and Ghezzi, 1998; Fuggetta, 2000] has motivated many organizations to adopt maturity
models, such as CMMI [Chrissis et al., 2006].

 This “plan-driven” development model has been used to support the definition
of less chaotic, more predictable and managed software development processes. The
success of some free/open source software (FOSS) projects, like Linux and Mozilla,
also caught the attention of academia, industry and users due to their capability to
produce high quality software, quickly and free [Feller and Fitzgerald, 2001]. In
addition, agile methods are often presented as an alternative to plan-driven development
to cope with changes that occur during a development project through shorter
development cycles and with a higher level of involvement and participation of the
client [Beck et al., 2001; Cockburn, 2001].

 Software organizations engage in a wide variety of projects with different
characteristics, where plan-driven, agile and FOSS development models, usually
perceived as opponents, complement each other, because each one works better or deals
with difficulties in some aspects. None of these development models will fulfill all
requirements of a specific project or organization. Thus, approaches that balance the
various development processes are necessary. This need can be observed by an increase
of development processes tailoring in organizations [Hansson et al., 2006], while the
number of organizations that follow a reference model in a completely prescriptive
manner decreases [Patel et al., 2006].

 Process tailoring is the act of particularizing a general process description to
derive a new process applicable to a specific situation [Ginsberg and Quinn, 1995]. In
this scenario, the research question investigated in this work is: how to tailor software
development processes, according to projects and organizations needs?

 However, Pedreira et al. [2007] summarize the negative consequences of
performing bad process tailoring in organizations: the project budget, the development
time, and the product quality depend directly upon the quality of the software process; a
bad software process may involve unnecessary activities that lead to a waste of time and
money, or the omission of those activities that are necessary, which may affect the
product quality; and inappropriate process tailoring can cause the software process not
to comply with the organizational standard process or with international standards such
as CMMI [Chrissis et al., 2006].

 To avoid these risks, we claim that process tailoring should consider
organization, project and team contexts, using collaboration and discipline as main
drivers [Magdaleno, 2010a]. Discipline refers to plan and direct process, while
collaboration focuses on people interaction. Both are complementary and essential in
any project, but in different proportions, depending on the project characteristics.
Therefore, they need to be balanced.

 This paper focuses particularly on the aspect of collaboration and argues that it
can be explained using social networks. In this sense, we identified the requirements
necessary to explore collaboration, through social networks, in software development.
These requirements led to the beginning of the construction of EvolTrack-
SocialNetwork tool.

 The remainder of this paper is organized as follows. In Section 2, we present the
main characteristics of each software development model. Section 3 details the solution
focus on balancing collaboration and discipline. Section 4 is dedicated to social
networks. Finally, Section 5 concludes the paper.

2. Software Development Models

A software development model is a set of practices recommended for developing
software. These practices are organized into a software process that corresponds to “a
coherent set of policies, organizational structures, technologies, procedures and artifacts
required to design, develop, deploy and maintain a software product” [Fuggetta, 2000].

 Plan-driven, agile and FOSS development models have the same goal: to
improve software development, but they adopt different approaches. While the plan-
driven development seeks for predictability, stability and reliability [Chrissis et al.,
2006], agile development tries to quickly add value to business and adapt to market,
technology and environment changes [Cockburn, 2001]. Furthermore, in FOSS
development, the main objective is to guarantee users’ freedom [FSF, 2008].

 Plan-driven development is typically exemplified by maturity models, such as
CMMI [Chrissis et al., 2006], and is characterized by its orientation to planning and
emphasis on well-defined processes. The assumptions of agile development, observed in
methods such as XP (Extreme Programming) [Beck, 1999] and Scrum [Schwaber,
2004], can be summarized by four values of the Agile Manifesto [Beck et al., 2001].

 The FOSS development can be understood by the bazaar metaphor [Raymond,
2001], where projects are collaboratively and transparently developed. In this model,

developers work on a voluntary basis, geographically distributed around the world,
using the Internet as a communication channel.

 Each one with its peculiarities, successes and challenges, the three development
models have followed separate paths. Due to differences in vocabulary,
misinterpretation and misuse of approaches, they are usually perceived as opponents.
However, all of them had, in the last decade, an enormous impact and their perspective
for future developments is also promising [Ebert, 2007; Theunissen et al., 2008]. As
each one represents a universe of development with unique characteristics, research in
the area has discussed how to accommodate the characteristics of each model for the
definition of development processes that are more effective [Boehm and Turner, 2003;
Glass, 2001; Glazer et al., 2008; Warsta and Abrahamsson, 2003].

 According to the results obtained through a systematic review, several
researchers have investigated the possibility of reconciliation among plan-driven, agile,
and FOSS models [Magdaleno et al., 2009]. In general, the existing proposals [Fritzsche
and Keil, 2007; Kahkonen and Abrahamsson, 2004; Paulk, 2001] involve the
comparison and combination of the practices suggested by different models, aiming to
produce a new hybrid one. However, the complexity of software development and the
variety of existing methods make the task of comparing them, arduous and inaccurate.
This kind of software development models combination limits the potential for synergy
among them, possibly resulting in an incomplete method, where it is no longer possible
to ensure that the resulting process actually has the desired characteristics.

 Boehm and Turner [2003] proposal suggests risk analysis of the project
characteristics as a way to select the project adequate method. This proposal has
similarities with our research work, since it considers project characterization. However,
it only focuses on agile and plan-driven, without considering FOSS development.

 This work argues that it is necessary more than the combination of practices of
different models. The proposed solution involves software development processes
tailoring, by balancing the main conflicting aspects in plan-driven, agile and FOSS
models – collaboration and discipline.

3. Collaboration and Discipline

Collaboration can be defined as the group working of two or more people to achieve a
common goal. The collaboration is an important factor for software organizations to
achieve their goals of productivity, quality and knowledge sharing [Magdaleno et al.,
2009]. In particular, software development is a complex process that involves the
collaboration of several people over a period of time to achieve a common goal [Cugola
and Ghezzi, 1998]. Therefore, software development is a typical example of
collaborative work [DeMarco and Lister, 1999; Herbsleb et al., 2005].

 Moreover, the discipline is related to the planning level adopted in software
process definition and the rigidity of control employed in process execution. Thus,
discipline imposes order, systematizing the work, avoiding the chaos and successes
dependent on individual talents [Boehm and Turner, 2003].

 Both are complementary and essential in any project, but in different
proportions, depending on the project characteristics [Magdaleno, 2010a]. For a
balanced mix between collaboration and discipline, it is necessary to understand how
these aspects vary and distinguish the software development models.

 Regarding collaboration, we can consider the different levels of formality in
communication, coordination, awareness and memory [Magdaleno et al., 2009].
Regarding discipline, software models vary on emphasis and form of their processes.
The plan-driven model is characterized by an emphasis on well-defined and
continuously improved processes. Both agile and free/open development use no
description or explicit modeling of the process adopted. Instead, they deal with a set of
general principles to guide the development.

 In order to explicit the collaboration and discipline, some instruments can be
considered. To understand the existing collaboration among people in software
projects, social networks [Barabasi, 2003] appear as a promising path. A social
network consists of a finite set of actors and the relationships among them. We can find
several works [Gao et al., 2003; Madey et al., 2002] on social network visualization and
analysis, which point to social networks potential to explain how the collaboration
occurs within a group.

 When we explicit collaboration, its visibility increases, so that members of the
organization can achieve greater understanding and motivate themselves. Thus,
understanding the social networks involved in development projects can help to
understand and monitor the level of collaboration in the project.

 Discipline can be measured by regulating the level of control of processes. The
level of discipline is established through a measurement approach. The need of
measuring results comes from the premise that you can’t control what you can’t
measure. Measurement is an important mechanism for visibility into a project and helps
to raise awareness about ongoing processes.

 For introducing collaboration and discipline into tailored software development
processes, it is important to define how to plan and monitor the needed or desired levels
of collaboration and discipline. In this sense, some instruments are being considered,
such as the collaborative maturity model (CollabMM) [Magdaleno et al., 2009], social
networks [Barabasi, 2003], and measurement [McGarry et al., 2001]. In particular, this
paper proposes the use of social networks as a mechanism that helps to explicit and
measure the existing collaboration among people in software development projects.

4. Social Networks
A social network consists of a finite set of actors and the defined relationships among
them [Wasserman and Faust, 1994]. In a social network, nodes represent actors and
edges correspond to possible relationships among them. The semantics of the
relationship depends on the analysis that will be made in this network.

 Adapting the approach proposed in [Cross et al., 2004], we can summarize four
steps of a methodology for studying social networks. The first step is to define the
purpose of analysis and provide the semantics of nodes and edges of the network. The
next step is to collect data to build the social network. This collection can be done
through questionnaires or facilitated by data mining in the repositories. Then, these data
can be manipulated for viewing or analysis.

 Next, in the social networks visualization step, the visual representation of
information is adopted to reduce the cognitive overload of the user and to facilitate
understanding and exploration of data through graphs. The social networks visualization
allows the observation of facts and knowledge extraction from graphs.

 Finally, the last step is the analysis of social networks, which uses the concepts
of graph theory to describe, understand and explain the interaction and social
organization of a group. This analysis seeks to understand the relationships between
people, groups or organizations through its properties. These properties [Wasserman
and Faust, 1994] were detailed in a previous study [Santos et al., 2010], which also
identified those (i.e., degree centrality, betweenness centrality, closeness centrality and
network density) with the greatest potential to explain collaboration. In software
development, we intend to use the social network analysis to understand the
collaboration among development team members.

4.1. Requirements for social networks tools

Several tools to deal with social networks have been proposed. In a previous study, we
analyzed 10 of them, 8 academic, one shareware and one open source tool [Magdaleno
et al., 2010]. This study showed that the identified tools already provide an extensive set
of generic algorithms that can be readily used to calculate social network properties.
However, they do not engage in analysis dedicated specifically to the collaboration. In
turn, most visualization tools are not actually available or have significant limitations.

 Considering the analysis of contributions and limitations of the tools, the
observation of existing proposals for analysis of social networks in software
development, and the objectives of this research work, we come to the list of
requirements that a social networks tool must meet [Magdaleno et al., 2010]. These
requirements were separated into three categories: mining (REQM), visualization
(REQV) and analysis (REQA). Few examples of the requirements are presented in
Table 1.

Table 1. Examples of social network tools requirements

Name Description

REQM3
The system must be able to mine data from different sources of information
for software development projects: a repository of configuration
management, source code, discussion forum and e-mail list.

REQV10 The system must provide the visualization of network evolution over time.

REQA11 The system must calculate the properties of social network analysis.

 The studied social networks tools were analyzed in accordance with this list
[Magdaleno et al., 2010], as partially presented in Table 2. These requirements,
although not forming a complete nor necessarily sufficient list, serve as a guide for
developing a tool that intends to be comprehensive and, if possible, bring new
contributions in relation to the tools currently available in the technical literature.

Table 2 – Tools x requirements

Requirement

A
ri

ad
n

e

A
u

gu
r

M
iS

oN

O
ss

N
et

w
or

k

P
aj

ek

R
ai

sA
w

ar
e

S
ar

ga
s

S
V

N
N

A
T

U
C

IN
E

T

V
is

on
e

REQM3          

Requirement

A
ri

ad
n

e

A
u

gu
r

M
iS

oN

O
ss

N
et

w
or

k

P
aj

ek

R
ai

sA
w

ar
e

S
ar

ga
s

S
V

N
N

A
T

U
C

IN
E

T

V
is

on
e

REQV10          

REQA11          

 After this analysis, we concluded that none of the analyzed social networks tools
met all requirements. Thus, there is still room to propose other tools that support in a
more adequate manner the need for collaboration analysis, through the implementation
of these requirements. This motivation has led to the creation of a new tool - called
EvolTrack-SocialNetwork.

4.2. EvolTrack-SocialNetwork

EvolTrack-SocialNetwork is an extension of EvolTrack tool [Cepeda et al., 2008],
which is one of the tools developed by the Software Reuse Group at COPPE/UFRJ.
EvolTrack is a software visualization tool that provides a time based approach to
observe the emerging design at different moments during the development life cycle.
Basically, it periodically extracts project information from a specific data source and
then, after performing some pre-processing and transformation, presents the
corresponding software design for that project period of time.

 EvolTrack was chosen as the starting point for building EvolTrack-
SocialNetwork, because it offers an initial infrastructure for data mining, some
visualization features and functionality for analyzing metrics, and has been developed
by the same research groups in which this work is being developed.

 After this choice, a study to examine EvolTrack feasibility for use in real
scenarios was planned and conducted, using seven FOSS projects [Cepeda et al., 2010].
These projects were chosen because they publish their development artifacts, including
source code, freely over the Internet. Thus, they represent an opportunity for research
due to its diversity, complexity, representativeness and ease of access.

 As a result, this study showed the feasibility of using EvolTrack and signaled
some scalability limitations in relation to the display of models of very large projects
[Cepeda et al., 2010]. Currently, this possibility is already under construction as part of
another ongoing research project that aims to expand the capabilities of EvolTrack
visualization [Silva, 2010].

 After this assessment of the feasibility of using EvolTrack, the design of
EvolTrack-SocialNetwork architecture has started. The EvolTrack-SocialNetwork
architecture is composed by three modules: mining, visualization and analysis. All of
these modules are based on a social network meta-model. Besides, since we reused
EvolTrack infrastructure, its components are also used.

 Currently, EvolTrack-SocialNetwork tool is under development and we expect
that it can contribute to provide information that will help the development team to
understand, reflect and interfere in the work being done.

5. Conclusion
Despite being one of the main tasks to be executed by the project manager, process
tailoring is not simple. It requires pondering many factors and evaluating a large set of
constraints. Due to this complexity, the manager usually is not able to evaluate all
available combinations and chooses a process in an ad-hoc manner, based on his/her
own experience, possibly selecting one that is not the best alternative for the current
project.

 In order to facilitate process tailoring, it is possible to support the project
manager by automating some of the steps to solve the problem, possibly reducing the
effort required to execute this activity and improving the quality and adequacy of the
obtained process [Magdaleno, 2010b]. This decision support environment can help in
the selection of an appropriate process for a software project according to the best
balance between collaboration and discipline.

 We claim that social networks, obtained as a result of interactions in software
development, can provide useful information for understanding the collaboration among
development team members. Therefore, this information can be used in process
tailoring. For instance, when a project, which would require a high level of
collaboration, is analyzed and a highly centralized coordination network is detected, the
support decision environment can review its process tailoring in order to treat this
problem and enhance the collaboration.

Acknowledgments
This work is partially funded by CNPq (under process nº. 142006/2008-4) and is part of
Programa Institutos Nacionais de Ciência e Tecnologia, supported by Conselho
Nacional de Desenvolvimento Científico e Tecnológico (CNPq/MCT) (under contract
nº. 557.128/2009-9) and by Fundação de Amparo à Pesquisa do Estado do Rio de
Janeiro (FAPERJ) (under contract nº. E-26/170028/2008).

Referências

Barabasi, A. L. (2003). "Linked: How Everything Is Connected to Everything Else and
What It Means for Business, Science, and Everyday Life". Cambridge: Plume.

Beck, K. (1999). "Extreme Programming Explained: Embrace Change". Boston, MA,
USA: Addison-Wesley.

Beck, K., Beedle, M., Bennekum, A. V., et al. (2001). "Manifesto for Agile Software
Development". http://agilemanifesto.org/.

Boehm, B., and Turner, R. (2003). "Balancing Agility and Discipline: A Guide for the
Perplexed". Boston, MA, USA: Addison-Wesley.

Cepeda, R. D. S. V., Magdaleno, A. M., Murta, L. G. P., et al. (2010). "EvolTrack:
Improving Design Evolution Awareness in Software Development". Journal of
the Brazilian Computer Society (JBCS), (to appear).

Cepeda, R. D. S. V., Murta, L. G. P., and Werner, C. (2008). "Visualizando a Evolução
de Software no Desenvolvimento Distribuído". In: Workshop de
Desenvolvimento Distribuído de Software (WDDS) - Simpósio Brasileiro de
Engenharia de Software (SBES), Campinas, SP, Brasil: SBC, pp. 41-50.

Chrissis, M. B., Konrad, M., and Shrum, S. (2006). "CMMI: Guidelines for Process

Integration and Product Improvement". Boston, MA, USA: Addison-Wesley.

Cockburn, A. (2001). "Agile Software Development". Boston, MA, USA: Addison-
Wesley.

Cross, R., Andrew, P., and Cross, R. (2004). "The Hidden Power of Social Networks:
Understanding How Work Really Gets Done in Organizations". Boston,
Massachussetts: Harvard Business School Press.

Cugola, G., and Ghezzi, C. (1998). "Software processes: A retrospective and a path to
the future". Software Process Improvement and Practice (SPIP) Journal, v. 4, pp.
101-123.

DeMarco, T., and Lister, T. (1999). "Peopleware: Productive Projects and Teams". New
York, USA: Dorset House.

Ebert, C. (2007). "Open Source Drives Innovation". IEEE Software, v. 24, n. 3, pp. 105-
109.

Feller, J., and Fitzgerald, B. (2001). "Understanding Open Source Software
Development". Boston, MA, USA: Addison-Wesley.

Fritzsche, M., and Keil, P. (2007). "Agile Methods and CMMI: Compatibility or
Conflict?". e-Informatica Software Engineering Journal, v. 1, n. 1, pp. 9-26.

FSF. (2008). "The Free Software Definition". http://www.gnu.org/philosophy/free-
sw.html.

Fuggetta, A. (2000). "Software process: a roadmap". Proceedings of the Conference on
The Future of Software Engineering, Limerick, Ireland: ACM, pp. 25-34.

Gao, Y., Freeh, V., and Madey, G. (2003). "Analysis and Modeling of Open Source
Software Community". In: North American Association for Computational
Social and Organization Sciences Conference (NAACSOS), Pittsburgh, PA,
USA: Computational Analysis of Social and Organizational Systems (CASOS),
pp. 1-4.

Ginsberg, M., and Quinn, L. (1995). "Process Tailoring and the Software Capability
Maturity Model", CMU/SEI-94-TR-024, SEI-CMU,
http://www.sei.cmu.edu/publications/documents/94.reports/94.tr.024.html.

Glass, R. L. (2001). "Agile Versus Traditional: Make Love, Not War!". Cutter IT
Journal, v. 14, n. 12, pp. 12-18.

Glazer, H., Dalton, J., Anderson, D., et al. (2008). "CMMI or Agile: Why Not Embrace
Both!", SEI-CMU,
http://www.sei.cmu.edu/publications/documents/08.reports/08tn003.html.

Hansson, C., Dittrich, Y., Gustafsson, B., et al. (2006). "How agile are industrial
software development practices?". Journal of Systems and Software (JSS), v. 79,
n. 9, pp. 1295-1311.

Herbsleb, J. D., Paulish, D. J., and Bass, M. (2005). "Global software development at
siemens: experience from nine projects". Proceedings of the 27th international
conference on Software engineering, St. Louis, MO, USA: ACM, pp. 524-533.

Kahkonen, T., and Abrahamsson, P. (2004). "Achieving CMMI Level 2 with Enhanced
Extreme Programming Approach". Product Focused Software Process

Improvement, Computer Science.Heidelberg: Springer-Verlag, pp. 378-392.

Madey, G., Freeh, V., and Tynan, R. (2002). "The open source software development
phenomenon: An analysis based on social network theory". In: Americas
Conference on Information Systems (AMCIS), Dallas, TX, USA, pp. 1806-
1813.

Magdaleno, A. M. (2010a). "Balancing Collaboration and Discipline in Software
Development Processes". Doctoral Symposium of International Conference on
Software Engineering (ICSE), Cape Town, South Africa: ACM/IEEE, pp. 331-
332.

Magdaleno, A. M. (2010b). "An optimization-based approach to software development
process tailoring". PhD Track - International Symposium on Search Based
Software Engineering (SSBSE), Benevento, Italy (to appear).

Magdaleno, A. M., Araujo, R. M. D., and Borges, M. R. S. (2009). "A Maturity Model
to Promote Collaboration in Business Processes". International Journal of
Business Process Integration and Management (IJBPIM), v. 4, n. 2, pp. 111-123.

Magdaleno, A. M., Werner, C. M. L., and Araujo, R. M. D. (2010). "Estudo de
Ferramentas de Mineração, Visualização e Análise de Redes Sociais", Relatório
Técnico, Rio de Janeiro, RJ, Brasil: PESC-COPPE, http://www.cos.ufrj.br.

Magdaleno, A. M., Werner, C. M. L., and Araujo, R. M. D. (2009). "Revisão Quasi-
Sistemática da Literatura: Conciliação de processos de desenvolvimento de
software", Relatório Técnico, ES-730, Rio de Janeiro, Brasil: PESC-COPPE,
http://www.cos.ufrj.br.

McGarry, J., Card, D., Jones, C., et al. (2001). "Practical Software Measurement:
Objective Information for Decision Makers". Addison-Wesley Professional.

Patel, C., Lycett, M., Macredie, R., et al. (2006). "Perceptions of Agility and
Collaboration in Software Development Practice". Hawaii International
Conference on System Sciences (HICSS), Kauai, Hawaii, USA, pp. 1-7.

Paulk, M. (2001). "Extreme programming from a CMM perspective". Software, IEEE,
v. 18, n. 6, pp. 19-26.

Pedreira, O., Piattini, M., Luaces, M. R., et al. (2007). "A systematic review of software
process tailoring". SIGSOFT Software Engineering Notes, v. 32, n. 3, pp. 1-6.

Raymond, E. S. (2001). "The Cathedral & the Bazaar". O'Reilly Media.

Santos, T. A. L., Araujo, R. M. D., and Magdaleno, A. M. (2010). "Identifying
Collaboration Patterns in Software Development Social Networks". Infocomp -
Journal of Computer Science (to appear).

Schwaber, K. (2004). "Agile Project Management with Scrum". Washington, DC, USA:
Microsoft Press.

Silva, M. A. (2010). "IAVEMS : Infraestrutura de Apoio à Visualização na Evolução de
Métricas de Software". Projeto Final, Rio de Janeiro, RJ, Brasil (em andamento):
UFRJ/IM.

Theunissen, M., Kourie, D., and Boake, A. (2008). "Corporate-, Agile- and Open
Source Software Development: A Witch's Brew or An Elixir of Life?".

Balancing Agility and Formalism in Software Engineering: Second IFIP TC 2
Central and East European Conference on Software Engineering Techniques
(CEE-SET), Springer-Verlag, pp. 84-95.

Warsta, J., and Abrahamsson, P. (2003). "Is Open Source Software Development
Essentially an Agile Method?". Proceedings of the Workshop on Open Source
Software Development, Portland, OR, USA, pp. 143-147.

Wasserman, S., and Faust, K. (1994). "Social Network Analysis: Methods and
Applications". Cambridge, United Kingdom: Cambridge University Press.

