

PUC

ISSN 0103-9741

Monografias em Ciência da Computação

n 06/10

Revising the Constraints of

the Mediated Schema

Marco Antonio Casanova, Tanara Lauschner,

Luiz André Portes Paes Leme,

Karin Koogan Breitman, Antonio Luz Furtado,

Vânia Maria Ponte Vidal

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO

Monografias em Ciência da Computação, No. 06/10 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena May, 2010

Revising the Constraints of the Mediated Schema*

Marco Antonio Casanova, Tanata Lauschner,
Luiz André Portes Paes Leme

1
,

Karin Koogan Breitman, Antonio Luz Furtado,
Vânia Maria Ponte Vidal

2

1
Instituto de Computação, Universidade Federal Fluminense

2
Departamento de Computação, Universidade Federal do Ceará

casanova@inf.puc-rio.br, tlauschner@inf.puc-rio.br,
lapaesleme@ic.uff.br,

karin@inf.puc-rio.br, furtado@inf.puc-rio.br,
vvidal@lia.ufc.br

Abstract. This paper addresses the problem of changing the constraints of a mediated
schema to accommodate the set of constraints of a new export schema. The relevance
of this problem lies in that the constraints of a mediated schema capture the common
semantics of the data sources and, as such, they must be maintained and made availa-
ble to the users of the mediation environment. The paper first argues that such prob-
lem can be solved by computing the greatest lower bound of two sets of constraints.
Then, for an expressive family of conceptual schemas, it shows how to efficiently de-
cide logical implication and how to compute the greatest lower bound of two sets of
constraints.

Keywords: constraint revision, mediated schema, Description Logics.

Resumo. Este trabalho endereça o problema de modificar as restrições de um esquema
mediado para acomodar as restrições de um novo esquema exportado. A relevância
deste problema reside no fato de que as restrições do esquema mediado capturam a
semântica compartilhada pelas fontes de dados e, portanto, devem ser atualizadas e
tornadas disponíveis para os usuários do ambiente de mediação. O trabalho inicial-
mente argumenta que tal problema pode ser resolvido computando-se o maior con-
junto de restrições que é simultaneamente conseqüência lógica de dois conjuntos de
restrições. Em seguida, para uma família de esquemas conceituais, o trabalho mostra
como decidir implicação lógica eficientemente e como computar o maior conjunto de
restrições que é simultaneamente conseqüência lógica de dois conjuntos de restrições.

Palavras-chave: revisão de restrições, esquema mediado, Lógica de Descrição.

* This work was partly supported by CNPq under grants 301497/2006-0, 473110/2008-3,
557128/2009-9, FAPERJ E-26/170028/2008, and CAPES/PROCAD NF 21/2009.

 ii

In charge of publications:

Rosane Teles Lins Castilho

Assessoria de Biblioteca, Documentação e Informação

PUC-Rio Departamento de Informática

Rua Marquês de São Vicente, 225 - Gávea

22451-900 Rio de Janeiro RJ Brasil

Tel. +55 21 3527-1516 Fax: +55 21 3527-1530

E-mail: bib-di@inf.puc-rio.br

Web site: http://bib-di.inf.puc-rio.br/techreports/

mailto:bib-di@inf.puc-rio.br

 iii

4

1 Introduction

A mediation environment contains a mediated schema M and several export schemas E1,...,En
that describe data sources. For each export schema Ei, the environment also features an

import schema Ii and a local mapping i that defines the concepts of Ii in terms of the con-

cepts of Ei. The environment also has a mediated mapping that defines the concepts of M
in terms of those of I1,...,In. Figure 1 depicts these concepts.

The constraints of the mediated schema are relevant for a correct understanding of what
the semantics of the external schemas have in common. For example, consider a virtual
store mediating access to online booksellers. The class hierarchy of the mediated schema
indicates what the booksellers’ book classifications have in common; if the mediated
schema enforces that all books must have ISBNs, then it means that all booksellers must
abide by the same requirement; if it allows books with no (known) authors, then at least
one bookseller must so allow; and so on.

We may break into three steps the process of adding to the mediation environment a

new export schema E0, with import schema I0 and local mapping 0. The concept revision
step adjusts the vocabulary of M to perhaps include classes and properties originally de-
fined in I0. The mapping revision step may modify the mediated mapping. Finally, the con-
straint revision step applies a minimum set of changes to the set of constraints of M to ac-
count for the set of constraints of I0.

One may have to iterate through these three steps since, in particular, revising the con-
straints of the mediated schema may interfere with the definition of the schema map-

pings. For example, the local mapping 0 may have to be adjusted to preserve the class
hierarchy of the mediated schema, or the class hierarchy of the mediated schema may
have to be changed to reflect the class hierarchy of I0.

In this paper, we are primarily concerned with the constraint revision step, with a bias
to mediation environments in the context of the Web. Maintaining mediation environ-
ments in such context becomes a challenge because the number of data sources may be
very large and, moreover, the mediator does not have much control over the data sources,
which may join or leave the mediation environment at will.

Fig. 1. Components of a mediation environment.

M

E0

I0

0

E1

1 n

...

...

I1

In

 En

5

We break the constraint revision step in two sub-steps. The constraint translation step
translates the set EC0 of constraints of E0 to I0, creating a set of constraints IC0 in such a

way that 0 maps states of E0 that satisfy EC0 into states of I0 that satisfy IC0. Intuitively, as
a result of this step, we express the semantics of E0 in terms of I0.

The least constraint change step applies a minimum set of changes to the constraints of
M to accommodate IC0 in such a way that all schema mappings remain correct. This step
intuitively means to harmonize the semantics of E0 with the semantics of all export sche-
mas previously added to the mediation environment, captured in the constraints of M.
The key questions here are how to precisely define what it means to apply a minimum set
of changes to a set of constraints, and how to guarantee that the mappings remain correct.

The contributions of this paper are twofold. First, we formulate the problem of chang-
ing the constraints of the mediated schema as the problem of computing the greatest low-
er bound of two sets of constraints, defined as the intersection of their theories. Second,
for an expressive family of conceptual schemas, we show how to efficiently decide logical
implication and how to compute the greatest lower bound of two sets of constraints.

In more detail, we work with schemas that partly correspond to OWL Lite [7] and
support the equivalent of named classes, datatype and object properties, minCardinalities
and maxCardinalities, InverseFunctionalProperties, subset constraints, and disjointness
constraints. The schemas we work with are also sufficiently expressive to encode com-
monly used UML constructs, such as classes, attributes, binary associations without asso-
ciation classes, multiplicity of attributes and binary associations, ISA hierarchies and dis-
jointness.

The decision procedure described in Section 4.2, and detailed in the appendix, is based
on the satisfiability algorithm for Boolean formulas in conjunctive normal form with at
most two literals per clause, described in [2]. The intuition is that the constraints we con-
sider can be treated much in the same way as Boolean implications. However, cardinality
constraints pose considerable technical problems to the proof of the theorems. The deci-
sion procedure essentially explores the structure of a set of constraints, captured as a
graph. The procedure to compute the greatest lower bound of two sets of constraints is a
direct consequence of the decision procedure. These results are new, and cover an expres-
sive and useful family of constraints, defined in Section 3.2.

This paper is organized as follows. Section 2 surveys related work. Section 3 reviews
concepts of Description Logics and introduces the notion of mediation environment. Sec-
tion 4 shows how to generate the revised set of constraints of the mediated schema. Sec-
tion 5 contains the conclusions. Finally, the appendix presents the proofs for the main re-
sults.

2 Related Work

Research on the construction of mediated schemas concentrates on vocabulary matching
techniques, on the definition of schema mappings, and on query processing, mostly ig-
noring the question of constraint revision.

6

Matching techniques are useful for the process of revising the vocabulary of the me-
diated schema, a topic we do not directly address, but mention on Section 4.1. Euzenat
and Shvaiko [17] present a comprehensive survey of ontology matching. Rahm and
Bernstein [39] survey schema matching, and Bernstein and Melnik [5] list the require-
ments for model management systems that support the matching process. Köpcke and
Rahma [25] comparatively analyze eleven frameworks for entity matching.

Schema matching techniques may be classified as syntactic, semantic, or hybrid [14].
For example, Melnik et al. [35] and Madhavan et al. [34] describe syntactic techniques
based on modeling the schemas as graphs. Bilke and Naumann [8] propose a semantic
technique based on an analysis of duplicated instances. Brauner et al. [9] adopt this strat-
egy to align thesauri. Wang et al. [42] describe a semantic technique based on probing the
databases.

Departing from this classification, Qi and Linga [38] present algorithms to resolve
schematic discrepancies by transforming metadata into the attribute values of entity
types, keeping the information and constraints of original schemas. Zhaoa and Ramb [43]
propose an iterative procedure for detecting both schema-level and instance-level match-
ings from heterogeneous data sources.

Schema and ontology reuse, as proposed in Lonsdale et. al. [32] and in Simperla [41], is
a fruitful strategy to overcome interoperability issues. The use of templates to help ex-
change schemas, as proposed in Papott and Torlone [37], is s similar strategy that may
also be used to circumvent interoperability problems.

As for the mappings between the external schema and the mediated schema, two basic
approaches have been used [29]. The first approach, called global-as-view (GAV), requires
that the mediated schema be expressed in terms of the data sources. More precisely, a
view over the data sources is associated with each element of the global schema, so that
the meaning of the element is specified in terms of the data stored at the data sources.
This means that adding a new data source may impact the previously defined mappings,
which may need to be updated. Several projects, such as TSIMMIS [19], IBIS [12] and
INFOMIX [30] adopt the GAV approach.

The second approach, called local-as-view (LAV), requires that the mediated schema be
specified independently from the data sources. The data sources are in turn defined as
views over the mediated schema [22]. This means that adding a new data source only re-
quires adding a new assertion to the mediated mapping. This approach improves main-
tainability and extensibility of the systems [6]. Agora [32], StyX [1] and Picsel [21] are ex-
amples of LAV systems.

Mappings may also be classified according to their accuracy into sound, complete and
exact [11, 29]. Let V be a view associated with an element E of the mediated schema. In
the GAV approach, V is sound when all data provided by V satisfies E, but there may be
additional data satisfying E that V does not provide. View V is complete when not all data
provided by V satisfies E, but all data satisfying E is provided by V. Finally, V is exact,
when all data provided by V satisfies E, and all data satisfying E is provided by V [11].

Rull et al. [40] present an approach for validating schema mappings that allows the
mapping designer to ask whether they have certain desirable properties.

7

The approach we take in Section 3.2 to define the mediation environment is akin to the
idea of sound views. Yet, we consider that constraints should be included in the mediated
schema to capture the common semantics of the data sources, unlike most proposals
based on the concept of exact views, which assume that the mediated schema has no con-
straints, as observed in [29].

Calì et al. [11] argue that the constraints of a mediated schema should be taken into ac-
count during query processing and that the schema definition language should incorpo-
rate flexible and powerful representation mechanisms for integrity constraints. The au-
thors also argue that, when the mediated schema contains constraints, the semantics of
the data integration system is best described in terms of a set of databases, and that query
processing should be based on the notion of querying incomplete databases.

Calvanese et al. [13] introduce a Description Logics framework, similar to that in Sec-
tion 3.1, to address schema integration and query answering. Atzeni et al. [3] cover the
problem of rewriting a schema from one model to another, but they do not touch on the
more complex problem of generating a new set of constraints that generalizes a pair of
sets of constraints from different schemas, which we address in Section 4. Hick and Hai-
nauta [24] show how requirements changes are propagated to database schemas, to data
and to programs through a general strategy.

Hartmanna et al. [23] apply techniques from Propositional Logic to offer decision sup-
port for specifying Boolean and multivalued dependencies.

Turning to a different aspect, the subsumption problem in Description Logics (DL) re-
fers to the question of deciding if a concept description always denotes a subset of the set
denoted by another concept description. The subsumption problem is decidable for ex-
pressive dialects of DL, but typically belongs to hard complexity classes [4], especially in
the presence of axioms (or constraints) [16]. For certain dialects of DL, there are poly-
nomial decision procedures for the subsumption problem that explore the structure of the
concept descriptions and that are, for this reason, called structural subsumption procedures
[18, 31]. However, such procedures do not take axioms into account. Furthermore, the re-
ductions suggested to encode the axioms lead us back to dialects for which the subsump-
tion problem is hard [16].

From the point of view of deciding logical implication and computing the greatest
lower bound of two sets of constraints, we depart from the tradition of Description Logics
deduction services, which are mostly based on tableaux techniques [4]. As mentioned in
the introduction, the decision procedure described in Section 4.2, and detailed in the ap-
pendix, is based on the satisfiability algorithm for Boolean formulas in conjunctive nor-
mal form with at most two literals per clause, described in [2]. The procedure to compute
the greatest lower bound of two sets of constraints is a direct consequence of the decision
procedure.

8

3 Mediation Environment

3.1 A Brief Review of Concepts from Description Logics

We adopt a family of attributive languages [36] defined as follows. A language L in the fa-

mily is characterized by an alphabet A, consisting of a set of atomic concepts, a set of atomic

roles, the universal concept and the bottom concept, denoted by ⊤ and , respectively, the

universal role and the bottom role, also denoted by ⊤ and , respectively, and a set of cons-
tants.

The set of role descriptions of L is inductively defined as

 An atomic role, and the universal and bottom roles are role descriptions

 If p and q are role descriptions, then the following expressions are role descriptions

p (the inverse of p)

p q (the composition of p and q)

p ⊔ q (the union of p and q)

The set of concept descriptions of L is inductively defined as

 An atomic concept, and the universal and bottom concepts are concept descriptions

 If a1,...,an are constants, then {a1,...,an} is a concept description

 If e and f are concept descriptions and p is a role description, then the following ex-
pressions are concept descriptions

 e (negation)

 e ⊓ f (intersection)

 e ⊔ f (union)

 p (existential quantification)

 p.e (full existential quantification)

 p.e (value restriction)

 (n p) (at-most restriction)

 (n p) (at-least restriction)

An interpretation s for A consists of a nonempty set s, the domain of s, whose elements
are called individuals, and an interpretation function, also denoted s, where:

 s() = , when denotes the bottom concept or the bottom role

 s(⊤) = s, when ⊤ denotes the universal concept

 s(⊤) = s s, when ⊤ denotes the universal role

9

 s(A) s, for each atomic concept A of L

 s(P) s s, for each atomic role P of L

 s(a) s , for each constant a of L, such that distinct constants denote distinct individu-
als (the uniqueness assumption)

The function s is extended to role and concept descriptions of L as follows:

 s(p) = s(p) (the inverse of s(p))

 s(p q) = s(p) s(q) (the composition of s(p) with s(q))

 s(p ⊔ q) = s(p) s(q) (the union of s(p) with s(q))

 s({a1,...,an}) = {s(a1),..., s(an)} (the set consisting of the individuals s(a1),..., s(an))

 s(e) = s s(e) (the complement of s(e) w.r.t. s)

 s(e ⊓ f) = s(e) s(f) (the intersection of s(e) and s(f))

 s(e ⊔ f) = s(e) s(f) (the union of s(e) and s(f))

 s(p) = {Is / (Js)((I,J)s(p)}

(the set of individuals that s(p) relates to some individual)

 s(p.e) = {Is / (Js)((I,J)s(p) Js(e)}

 (the set of individuals that s(p) relates to some individual in s(e))

 s(p.e) = {Is / (Js)((I,J)s(p) Js(e)}

 (the set of individuals I such that, if s(p) relates I to an individual J, then J is in s(e))

 s(n p)={Is / |{Js / (I,J)s(p)}| n}

 (the set of individuals that s(p) relates to at least n distinct individuals)

 s(n p)={Is / |{Js / (I,J)s(p)}| n}

 (the set of individuals that s(p) relates to at most n distinct individuals)

A formula of L is an expression of the form u v, called an inclusion, or of the form
u | v, called a disjunction, or of the form u ≡ v, called an equivalence, where u and v are

both concept descriptions or they are both role descriptions of L. A definition is an equiva-
lence of the form T ≡ u, where T is an atomic concept and u is a concept description, or T
is an atomic role and u is a role description.

An interpretation s for L satisfies u v iff s(u) s(v), s satisfies u | v iff s(u) s(v)=,

and s satisfies u v iff s(u) = s(v). We adopt the following familiar notation, where is a

formula and and are sets of formulas:

 s indicates that s satisfies

10

 s indicates that s satisfies all formulas in ; in this case, we say that s is a model of

 is satisfiable iff there is a model of

 indicates that any model of satisfies ; in this case, we say that logically im-

plies

 indicates that any model of is also a model of ; in this case, we say that logi-

cally implies

 Th() denotes the theory induced by , which is the smallest set of formulas that contains

 and is closed under logical implication

Also, in Sections 3 and 4, we will use concept and role descriptions over an alphabet A

which is the union of disjoint alphabets A1,...,An. The syntax of concept and role descrip-

tions remains the same. An interpretation s for A is constructed from interpretations

s1,...,sn for A1,...,An in the obvious way, except that we assume that

 (Domain Disjointness Assumption) Any pair of interpretations for Ai and Aj have dis-

joint domains, for each i,j[1,n], with i j

3.2 Extralite Schemas

We will work with extralite schemas that partly correspond to OWL Lite [7]. Extralite
schemas support the equivalent of named classes, datatype and object properties, min-
Cardinalities and maxCardinalities, InverseFunctionalProperties, which capture simple
keys, subset constraints, and disjointness constraints. Extralite schemas are also sufficient-
ly expressive to encode commonly used UML constructs, such as classes, attributes, bi-
nary associations without association classes, multiplicity of attributes and binary associa-
tions, ISA hierarchies and disjointness, but not complete generalizations.

Formally, an extralite schema is a pair S=(A,C) such that

 A is an alphabet, called the vocabulary of S, whose atomic concepts and atomic roles are

called the classes and properties of S, respectively

 C is a set of formulas, called the constraints of S, which must be of one the forms

 Domain Constraint: P D (property P has class D as domain)

 Range Constraint: P R (property P has class R as range)

 minCardinality constraint: C (k P) or C (k P)

(property P or its inverse P maps each individual in class C to at least k distinct indi-
viduals)

 maxCardinality constraint: C (k P) or C (k P)

(property P or its inverse P maps each individual in class C to at most k distinct indi-
viduals)

11

a:Product

 a:title range string

 a:price range decimal

 a:currency range string

a:Book

 a:isbn range string

 a:author range string

 a:pub range a:Publ

a:Publ

 a:name range string

 a:city range string

a:Book is-a a:Product

a:Music is-a a:Product

a:Book disjoint-from a:Music

Fig. 2(a). Informal definition of the Amazon schema.

 Subset Constraint: E F (class E is a subclass of class F)

 Disjointness Constraint: E | F (classes E and F are disjoint)

We also admit constraints of one of the forms:

 C (class C is always empty)

 P or P (property P is always empty, i.e.,
 P has an empty domain or an empty range)

We will use the terms class, property, vocabulary and state interchangeably with atomic
concept, atomic role, alphabet and interpretation, respectively.

Example 1: Figure 2 contains schemas for fragments of the Amazon and the eBay data-
bases, using the namespace prefixes “a:” and “e:” to refer to their vocabularies, respec-
tively. Figures 2(a) and 2(c) show the schemas using an informal notation. Figures 2(b)
and 2(d) formalize the constraints: the first column shows the domain and range con-
straints; the second column depicts the cardinality constraint; and the third column con-
tains the subset and disjointness constraints.

For example, the first column of Figure 2(b) indicates that:

 a:title is a property with domain a:Product and range string (the set of XML Schema
strings)

 a:pub is a property with domain a:Book and range a:Publ

 a:title a:Product

 a:title

 string

...
 a:pub a:Book

 a:pub

 a:Publ

...

 a:name a:Publ
 a:name

 string

...

a:Product (1 a:title)
a:Product (1 a:price)
a:Product (1 a:currency)

a:Book (1 a:isbn)
a:Book (2 a:pub)

a:Publ (1 a:name)
a:Publ (3 a:city)

a:Book a:Product
a:Music a:Product

a:Book | a:Music

Fig. 2(b). Formal definition of (some of) the constraints of the Amazon schema.

12

The second column of Figure 2(b) shows the cardinalities of the Amazon schema:

 all properties have maxCardinality equal to 1, except a:author, a:pub and a:city

 a:author has unbounded maxCardinality, consistently with the fact that a book may
have multiple authors

 a:pub has minCardinality equal to 2

 a:city has minCardinality equal to 3

The third column of Figure 2(b) indicates that a:Book and a:Music are subclasses of
a:Product, and that a:Book and a:Music are disjoint classes.

Figure 2(d) likewise describes the constraints of the eBay schema. In particular, the
second column indicates that all properties have maxCardinality equal to 1, except

e:place .

3.3 Components of a Mediation Environment

A mediation environment contains a mediated schema M, a mediated mapping and, for each

k=1,...,n, an export schema Ek, an import schema Ik and a local mapping k.

Import schemas are a notational convenience to divide the definition of the mappings
into two stages: the definition of the local mappings and the definition of the mediated
mapping. We restrict the import schemas as follows:

(1) for k=1,...,n, the vocabulary of Ik is equal to the vocabulary of M, in the sense that the
two vocabularies have the same classes and properties, but different namespaces

Assume that the classes and properties in M are C1,...,Cu and P1,...,Pv. We adopt names-
pace prefixes, as in the examples, to distinguish the occurrence of a symbol in the vocabu-

e:Seller

 e:name range string

e:Offer

 e:qty range integer

 e:price range double

 e:currency range string

 e:seller range e:Seller

 e:product range e:Product

e:Product

 e:type range string

 e:ean range integer

 e:title range string

 e:author range string

 e:edition range integer

 e:year range integer

 e:place range string

Fig. 2(c). Informal definition of the eBay schema.

 e:name e:Seller

 e:name

 string

...

 e:seller e:Offer
 e:seller

 e:Seller

 e:product e:Offer
 e:product

 e:Product

...

e:Seller (1 e:name)
e:Offer (1 e:qty)
e:Offer (1 e:price)
...

e:Product (1 e:type)
e:Product (1 e:ean)
e:Product (1 e:title)
...

e:Product (1 e:place)

(no subset or disjointness
constraints)

Fig. 2(d). Formal definition of (some of) the constraints of the eBay schema.

13

lary of M from the occurrence of the same symbol in the vocabulary of Ik. However, in the
formal development, we follow a more abstract notation. For each class Ci (or property Pj)
in the vocabulary of M, we denote the occurrence of Ci (or Pj) in the vocabulary of Ik

by k
iC (or k

jP), and say that k
iC (or k

jP) matches Ci (or Pj).

For each k=1,...,n, the local mapping k defines the classes and properties of Ik in the

terms of the vocabulary of the export schema Ek. We restrict k as follows:

 for each class k
iC of Ik, the local mapping k contains a definition of the form

(2) k
iC ≡ k

i , where k
i is a concept description over the vocabulary of Ek

 for each property k
jP of Ik, the local mapping k contains a definition of the form

(3) k
jP ≡ k

j , where k
j is a role description over the vocabulary of Ek

Note that k
i may be the bottom concept to indicate that Ek does not contribute with

any individual to class k
iC . In other words, the interpretation of k

iC is always an empty

set. Combined with the requirement that the vocabulary of Ik be equal to the vocabulary
of M, this might seem an unnecessary complication. However, these technical details
simplify the computation of the revised set of constraints of a mediated schema. Likewise,

k
j may be the bottom role , when Ek does not contribute with any individual to property

k
jP .

We introduce k as the function induced by k, defined as the function from states of Ek

into states of Ik such that, for each state s of Ek,)(sk = r iff

 r(k
iC)= s(k

i), if k
iC ≡ k

i is the definition for class k
iC in k

 r(k
jP)= s(k

j), if k
jP ≡ k

j is the definition for property k
jP in k

For each k=1,...,n, let ECk be the set of constraints of Ek. The set ICk of constraints of the
import schema Ik should be defined so that k maps consistent states of Ek into consistent

states of Ik. We refer the reader to Lauschner et al. [26] for efficient strategies to generate
ICk, when ECk is the family of schema constraints considered in Section 3.2 and the local

mapping k uses an expressive family of concept and role expressions.

We illustrate the concepts just introduced with the help of an example.

Example 2: Consider the Sales mediated schema with the vocabulary shown in Figure
4(a), distinguished by the namespace prefix “s:”.

Figure 3(a) defines the vocabulary of the Amazon import schema, which is equal to
that of the Sales mediated schema, but is identified by the namespace prefix “ai:”. Figure
3(b) contains the translation of the constraints of the Amazon export schema, shown in
Figure 2(b), to the Amazon import schema. Figure 3(c) contains the local mapping that

14

defines the concepts of the vocabulary of the Amazon import schema in terms of the con-
cepts of the vocabulary of the Amazon export schema of Figure 2(a).

For example, the definitions ai:city a:pub a:city and ai:Book a:Book have sever-
al consequences. First, the domain and range of ai:city are ai:Book and string. Second,
ai:city has minCardinality 3 with respect to ai:Book since, observing Figure 2(b), a:pub
has minCardinality 2 with respect to a:Book, a:city has minCardinality 3 with respect to

a:Publ, and a:Publ is both the range of a:pub and the domain of a:city.

Intuitively, in the Amazon schema, each book is associated with at least 2 publishers
and each publisher is located in at least 3 cities, which are not necessarily distinct from
the cities associated with other publishers. Hence, in the Amazon import schema, all we
can assert is that each book is associated with at least 3 publishers’ cities. As a concrete
example, suppose that: (1) the book “Semantic Web” is associated with two publishers,
“Springer Verlag” and “Ed. Campus”; (2) “Springer Verlag” is located in three cities
“London”, “Berlin” and “Sidney”; “Ed. Campus” is also located in “London”, “Berlin”
and “New York”. Note that these individuals do not violate the cardinality constraints of
the Amazon export schema. Then, the book “Semantic Web” is associated with three ci-
ties, “London”, “Berlin” and “Sidney”.

The other constraints of the Amazon import schema follow directly from those of the
Amazon export schema, since each of the other classes and properties of the import
schema is defined in terms of a single class or property of the export schema.

Figure 3(d) defines the vocabulary of the eBay import schema, which is again equal to
that of the Sales mediated schema, but is identified by the namespace prefix “ei:”. Figure
3(e) contains the translation of the constraints of the eBay export schema, shown in Figure
2(c), to the eBay import schema. Figure 3(f) contains the local mapping for the eBay ex-
port schema of Figure 2(c). In particular, observe that, in Figure 3(f), ei:Music and ei:Book
are defined as restrictions of e:Product (given an atomic concept A, a restriction of A is an

intersection of the form A ⊓ e). As a consequence, we have the two subset constraints and
the disjointness constraint shown on the third column of Figure 3(e), albeit the original
eBay schema has no such constraints (see Figure 2(d)). Note that the disjointness con-

straint requires assuming that distinct constants denote distinct individuals.

Classes:
 ai:Product

 ai:Book

 ai:Music

Properties:
 ai:title

 ai:city

Fig. 3(a). Vocabulary of the Amazon import schema.

 ai:title ai:Product

 ai:title

 string

 ai:city ai:Book
 ai:city

 string

ai:Product (1 ai:title)
ai:Book (3 ai:city)

ai:Book ai:Product
ai:Music
ai:Product

ai:Book | ai:Music

Fig. 3(b). Constraints of the Amazon import schema.

ai:Product a:Product

ai:Music a:Music

ai:Book a:Book

ai:title a:title

ai:city a:pub a:city

Fig. 3(c). Local mapping from the Amazon export schema to Amazon import
schema.

15

We now complete the description of a mediation environment with the definition of

the mediated mapping. We restrict a mediated mapping as follows:

 for each i=1,...,u, the mapping contains a definition of the form

(4) Ci ≡ 1
iC ... n

iC

where k
iC is the class of Ik that matches Ci (which always exists by (1)), for each k=1,...,n

 for each j=1,...,v, the mapping contains a definition of the form

(5) Pj ≡
1
jP ... n

jP

where k
jP is the property of Ik that matches Pj (which always exists by (1)), for each

k=1,...,n

We introduce as the function induced by the mediated mapping and the local map-

ping 1,...,n as the mapping from states of E1,...,En into states of M such that, for states
s1,...,sn of E1,...,En,),...,(n1 ss = r iff, for i=1,...,u and j=1,...,v

 r(Ci)= s1(1
iC) ... sn(n

iC), if Ci ≡ 1
iC ... n

iC is the definition of Ci in

 r(Pj) = s1(1
jP) ... sn(n

jP), if Pj ≡ 1
jP ... n

jP is the definition of Pj in

Example 3: A complete description of a mediation environment would be as follows:

 for the mediated schema Sales

 the vocabulary listed in Figure 4(a)

 the constraints shown in Figure 4(b), whose construction is discussed in Example 4 in
Section 4.1

 the mediated mapping shown in Figure 4(c)

Classes:
 ei:Product

 ei:Book

 ei:Music

Properties:
 ei:title

 ei:city

Fig. 3(d). Vocabulary of the eBay import schema.

 ei:title ei:Product

 ei:title

 string

 ei:city ei:Product
 ei:city

 string

ei:Product (1 ei:title)
ei:Product (1 ei:city)

ei:Book ei:Product
ei:Music ei:Product

ei:Book | ei:Music

Fig. 3(e). Constraints of the eBay import schema.

ei:Product e:Product

ei:Music e:Product e:type.{‘music’}
ei:Book e:Product e:type.{‘book’}

ei:title e:title

ei:city e:place

Fig. 3(f). Local mapping from the eBay export schema to the eBay import schema.

16

 for the Amazon database fragment:

 the export schema shown in Figures 2(a) and 2(b)

 the import schema with the vocabulary listed in Figure 3(a) and the constraints
shown in Figure 3(b)

 the local mapping shown in Figure 3(c)

 for the eBay database fragment:

 the export schema shown in Figures 2(c) and 2(d)

 the import schema with the vocabulary listed in Figure 3(d) and the constraints
shown in Figure 3(e)

 the local mapping shown in Figure 3(f).

4 Construction of the Mediated Schema Constraints

4.1 Basic Steps of the Constraint Revision Process

Consider a mediation environment with mediated schema M and mediated mapping .
Assume that MV is the vocabulary and MC is the set of constraints of M. Let E0 be a new
export schema, with vocabulary EV0 and set of constraints EC0.

To create a revised mediation environment that includes E0, we treat M much in the
same way as a data source, as follows:

1. (Concept revision step)

1.1. Define the vocabulary MVr of the revised mediated schema Mr with the same
classes and properties as MV and perhaps new classes and properties to reflect
those in EV0.

Classes:
 s:Product

 s:Book

 s:Music

Properties:
 s:title

 s:city

Fig. 4(a). Vocabulary of the Sales mediated schema.

 s:title s:Product

 s:title

 string

 s:city s:Product
 s:city

 string

s:Product (1 s:title)
s:Book (1 s:city)

s:Book s:Product
s:Music s:Product

s:Book | s:Music

Fig. 4(b). Constraints of the Sales mediated schema.

s:Product ai:Product ei:Product

s:Music ai:Music ei:Music

s:Book ai:Book ei:Book

s:title ai:title ei:title

s:city ai:city ei:city

Fig. 4(c). Mediated mapping.

17

1.2. Define a new vocabulary MV + by adding to MV these new classes and properties.

1.3. Define the vocabulary IV0 of the import schema I0 for E0 with the same classes
and properties as MVr.

2. (Mapping revision step)

2.1. Define the local mapping 0 between I0 and E0.

2.2. Define a new mediated mapping + by adding to definitions for the new classes
and properties in MV +.

2.3. Define the mediated mapping r as in Equations (4) and (5).

3. (Constraint revision step)

3.1. Define the set IC0 of constraints of I0 by inspecting EC0 and 0.

3.2. Define a new set of constraints MC+ by adding to MC constraints for the new
classes and properties in MV +.

3.3. Define the set of constraints MCr of Mr by applying a minimum set of changes to
MC + to account for IC0.

Step 3.3 is the main trust of this paper and is discussed in detail in this and the next
sections. Steps 1.1, 1.2, 1.3 and 2.1 may be carried out by the automated matching process
we discussed in [10, 27, 28]. Step 3.1 was discussed in [26]. Steps 2.2, 2.3 and 3.2 are quite
simple, but raise a few points that we address in what follows.

As in Section 3.3, assume that the classes and properties in MV are Ci and Pj, for

i=1,…,u and j=1,...,v. Suppose that the classes and properties in MVr are r
iC and r

jP , for

i=1,…,u+p and j=1,...,v+q. Then, for i=u+1,…,u+p and j=v+1,...,v+q

 the new classes and properties in MV + are Ci and Pj, which match r
iC and r

jP

 the new definitions in + are Ci ≡ and Pj ≡

 the new constraints in MC+ are Ci , Pj and (Pj)

Observe that the new constraints in MC + are a trivial consequence of the fact that, for

i=u+1,…,u+p and j=v+1,...,v+q, the new definitions in + force Ci and Pj to always have
empty interpretations. In particular, the constraints for Pj capture that Pj is an empty
property by saying that the domain and range of Pj are always empty. This strategy is ne-
cessary since the constraints we consider do not allow expressions of the form Pj . Fur-
thermore, note that it is redundant (but not wrong) to add constraints saying that both the
domain and the range of Pj are always empty.

18

Also observe that IC0 will likewise have a constraint of the form 0
iC , whenever 0

contains a definition of the form 0
iC ≡ , and constraints of the forms 0

jP and (0
jP)

, whenever 0 contains a definition of the form 0
jP ≡ .

The revised mapping can then be written as follows:

 for each i=1,...,u+p, the revised mediated mapping r contains a definition of the form

(6) r
iC ≡ 0

iC Ci , where 0
iC is the class of I0 that matches r

iC and Ci is the class of M that

matches r
iC

 for each j=1,...,v+q, the revised mediated mapping r contains a definition of the form

(7) r
jP ≡ 0

jP Pj , where 0
jP is the property of I0 that matches r

jP and Pj is the property of M

that matches r
jP

We focus on how to create the revised set of constraints MCr. The reader should bear in
mind the notation just introduced, which will be used in what follows.

There are two questions here: (1) what it means to apply a minimum set of changes to
a set of constraints; (2) how to maintain the correctness of the schema mappings. To ad-
dress the first question, we introduce a lattice of sets of constraints.

Recall from Section 3.1 that Th() denotes the theory induced by a set of formulas .
Let T be the set of all sets of constraints. Then, (T,) is a lattice where, given any two sets

of constraints, 1 and 2, their least upper bound (l.u.b.) is 1 2 = Th(1) Th(2) and

their greatest lower bound (g.l.b.) is 1 2 = Th(1) Th(2). Note that i 1 2

and 1 2 i, for i=1,2.

We argue that MCr can be taken as the g.l.b. of the translation of MC + to MVr and the
translation of IC0 to MVr. Note that a translation step is necessary since, technically, no
two constraints respectively in Th(MC +) and in Th(IC0) would be equal since they are
written in different vocabularies. Intuitively, the translation would be just a matter of
changing namespaces.

Let L1 and L2 be two languages with alphabets A1 and A2, respectively.

 An injective mapping :A1→L2 is called a substitution function from A1 into L2 iff

o ()= and (⊤)=⊤

o if s is an atomic concept of A1 and (s)=e then e is a concept expression of L2

o if s is an atomic role of A1 and (s)=e then e is a role expression of L2

 The translation of a formula of L1 to L2 via is the formula of L2, denoted by [], ob-

tained by replacing in each symbol A of A1 by (A).

 The translation of a set of formulas of L1 to L2 via is the set of formulas of L2, de-

noted [], obtained by translating each formula in to L2 via .

19

In particular, the mediated mapping r induces three canonical substitution functions:

 0
r̂ from IV0 into MVr such that B)A(ˆ 0

r iff A is an atomic concept or an atomic role of

IV0 that occurs in the body of the definition for B in r

r̂ from MV+ into MVr such that B)A(ˆ

r iff A is an atomic concept or an atomic role of

MV+ that occurs in the body of the definition for B in r

 r̂ from MVr into IV0 MV+ such that e)B(ˆ
r iff the definition of B in r is B ≡ e

To improve the notation, we write the translation of a constraint of IC0 from IV0 to

MVr using 0
r̂ as [IV0→MVr], the translation of a constraint of MV + from MV + to MVr

using
r̂ as [MV +→MVr], and the translation of a constraint of Mr from MVr to

IV0 MV + using r̂ as [MVr→IV0 MV +].

Therefore, the translation of IC0 to MVr is the set of constraints IC0[IV0→MVr] and the

translation of MC + to MVr is the set of constraints MC +[MV +→MVr].

We are now ready to state that MCr can be taken as the g.l.b. of IC0[IV0→MVr] and

MC +[MV +→MVr] without impairing consistency preservation.

Theorem 1: Let MCr = IC0[IV0→MVr] MC +[MV +→MVr]. Suppose that:

(i) (Domain Disjointness Assumption) Any pair of interpretations for EVi and EVj have
disjoint domains.

(ii) The mediated mapping and the local mapping 1,...,n induce a mapping from
consistent states of E1,...,En into consistent states of M.

(iii) The local mapping 0 induces a mapping from consistent states of E0 into consis-
tent states of I0.

Then, the revised mediated mapping r and the local mappings 0,1,...,n induce a
mapping from consistent states of EC0, EC1,..., ECn into states of the revised mediated

schema that satisfy MCr.

The appendix contains a proof of Theorem 1. We just anticipate here that it depends on
the definition of the mediated mapping with the help of union expressions, as in Equa-
tions (6) and (7), and on the Domain Disjointness Assumption, introduced at the end of
Section 3.1.

We also stress that, since MCr is defined as the g.l.b. of IC0[IV0→MVr] and

MC+[MV+→MVr] with respect to (T,), we consider that MCr is the least way to revise
MC – in the sense that MCr is the smallest such theory – and yet retain correctness of the
mappings, in view of Theorem 1.

20

We now give a simple example that illustrates how the constraints of a mediated
schema can be defined.

Example 4: We illustrate how the constraints of the Sales mediated schema, listed in Fig-
ure 4(b), can be gradually constructed from the constraints of the Amazon and the eBay
import schemas, shown in Figures 3(b) and 3(e). Then, we discuss how to include a third
import schema.

(A) Assume that the Sales mediation environment contains just the definition of the voca-
bulary listed in Figure 4(a). Suppose that one wishes to add to the mediation environment
the Amazon fragment described in Figures 2(a) and (b), with the import schema defined
in Figures 3(a) and (b), and the local mapping introduced in Figure 3(c).

Then, after this initial step, the Amazon import schema is treated as the mediated
schema, and the mediated mapping is simply empty. Furthermore, the initial vocabulary
of the mediated schema is in fact that of the Amazon import schema, identified by the
namespace prefix “ai:”, with classes ai:Book, ai:Music and ai:Product, and properties
ai:title and ai:city.

(B) Consider adding to the mediation environment the eBay fragment described in Fig-
ures 2(c) and (d), with the import schema defined in Figures 3(d) and (e), and the local
mapping introduced in Figure 3(f).

We perform three steps:

(Concept revision step) Assume for the sake of argument that no new classes or properties
are added. Thus, the Sales vocabulary, now identified by the namespace prefix “s:”, has
classes s:Book, s:Music and s:Product, and properties s:title and s:city.

(Mapping revision step) Figure 5(a) shows the revised mediated mapping of the Sales med-
iation environment.

(Constraint revision step) Consider the following sets of constraints:

 A, E – the sets of constraints of the Amazon and eBay import schemas, shown in
Figures 3(b) and (e).

 A, E – the sets of constraints obtained by translating, respectively, A and E to the
vocabulary of the mediated schema. The translation is simply a process that replaces
ai:Product by s:Product, etc.

s:Product ai:Product bi:Product

s:Music ai:Music bi:Music

s:Book ai:Book bi:Book

s:title ai:title bi:title

s:city ai:city bi:city

Fig. 5(a). Revised mediated mapping of the Sales mediation environment.

21

We stress that it does not make sense to compute the g.l.b. of A and E, since these

constraints are written in different vocabularies. Therefore, we compute the g.l.b. of A

and E, which are constraints in the same vocabulary (that of the mediated schema).
Since

A E = Th(A) Th(E)

we have to find the constraints that are simultaneously derivable from A and from E.
For ease of reference, Figure 5(b) repeats the constraints of the Sales mediated schema.

We first analyze in detail what minCardinality constraints for property s:city are in

AE. From Figures 3(b) and (e), we have the following minCardinality constraints for

city in A and E:

(1) ai:Book (3 ai:city) (in A)

(2) ei:Product (1 ei:city) (in E)

We also have the following subset constraint in E:

(3) ei:Book ei:Product (in E)

When translated to the vocabulary of the mediated schema, identified by the prefix
“s:”, the constraints in (1) to (3) become:

(4) s:Book (3 s:city) (in A)

(5) s:Product (1 s:city) (in E)

(6) s:Book s:Product (in E)

Hence, the only minCardinality constraint for property s:city that is simultaneously

derivable from A and E is

(7) s:Book (1 s:city) (in AE)

Indeed, we have that:

 (4) implies (7), if we observe that a minCardinality of n implies a minCardinality of m,

if m n

 (5) and (6) imply (7)

By a simpler argument, we also have:

(8) s:Product (≤ 1 s:title) (in AE)

The subset and disjointness constraints in AE are those shown in the third column

of Figure 5(b); in fact, they are in the intersection of A and E.

 s:title s:Product

 s:title

 string

 s:city s:Product
 s:city

 string

s:Product (1 s:title)
s:Book (1 s:city)

s:Book s:Product
s:Music s:Product

s:Book | s:Music

Fig. 5(b). Constraints of the Sales mediated schema.

22

The domain and range constraints in AE are those shown in the first column of

Figure 5(b); in fact, they are in the intersection of A and E, except for the domain con-
straint s:city s:Product, which is derived as follows.

From Figures 3(b) and (e), we have the following domain constraints in A and E :

(9) ai:city ai:Book (in A)

(10) ei:city ei:Product (in E)

We also have the following subset constraints in A:

(11) ai:Book ai:Product (in A)

When translated to the vocabulary of the mediated schema, once again, identified by
the prefix “s:”, the constraints in (9) to (11) become:

(12) s:city s:Book (in A)

(13) s:city s:Product (in E)

(14) s:Book s:Product (in A)

Hence, the domain constraint for property s:city that is simultaneously derivable

from A and E is

(15) s:city s:Product (in AE)

This illustrates the computation of the constraints of a mediated schema as the g.l.b. of
the sets of constraints of the import schemas, after proper translation.

(C) Let BN be a new export schema (say, a fragment of the Barnes&Noble database),
shown in Figures 5(c) and 5(d).

Classes:
 b:Product b:CultProd

 b:Music b:Book

Properties:
 b:title

Fig. 5(c) Vocabulary of the BN export schema.

 b:title b:Product

 b:title

 string

(no cardinality constraints) b:CultProd b:Product

b:Book b:CultProd
b:Music b:CultProd

Fig. 5(d). Constraints of the BN export schema.

23

To include BN in the Sales mediation environment, creating the Sales/BN mediation
environment, we again perform three steps:

(Concept revision step) Assume for the sake of argument that the vocabulary of the
Sales/BN mediated schema, with namespace “sr:”, as in Figure 5(e), is equal to that of the
Sales mediated schema. The vocabulary of the Sales mediated schema is still identified with
namespace prefix “s:”, as in Figure 5(f). The BN import schema has the vocabulary
shown in Figure 5(g).

(Mapping revision step) Figure 5(h) shows the local mapping from the BN export schema to

the BN import schema. Note that the definition bi:city indicates that property bi:city
will always be empty in the BN import schema.

Figure 5(i) depicts the mediated mapping of the Sales/BN mediation environment.

(Constraint revision step) Figure 5(j) contains the constraints of the BN import schema.

Note that the constraints bi:city and bi:city in Figure 5(j) follow from the
definition bi:city in Figure 5(h). Indeed, these constraints capture that bi:city is an

Classes:
 sr:Product

 sr:Music

 sr:Book

Properties:
 sr:title

 sr:city

Fig. 5(e) Vocabulary of the Sales/BN mediated schema.

Classes:
 s:Product

 s:Music

 s:Book

Properties:
 s:title

 s:city

Fig. 5(f) Vocabulary of the Sales mediated schema.

Classes:
 bi:Product

 bi:Music

 bi:Book

Properties:
 bi:title

 bi:city

Fig. 5(g) Vocabulary of BN import schema.

bi:Product b:Product

bi:Music b:Music

bi:Book b:Book

bi:title b:title

bi:city

Fig. 5(h). Local mapping from the BN export schema to the BN import schema.

sr:Product bi:Product s:Product

sr:Music bi:Music s:Music
sr:Book bi:Book s:Book

sr:title bi:title s:title

sr:city bi:city s:city

Fig. 5(i). Mediated mapping of the Sales/BN mediation environment.

 bi:title bi:Product

 bi:title

 string

 bi:city
 bi:city

 bi:Book bi:Product
bi:Music bi:Product

Fig. 5(j). Constraints of the BN import schema.

24

empty property by saying that its domain and range are always empty. This strategy is
necessary since the constraints we consider do not allow expressions of the form bi:city
 . Furthermore, note that it is redundant (but not wrong) to add a constraint saying that
the domain of bi:city is always empty, as well as a constraint saying that the range of
bi:city is always empty.

Since the BN external schema has no explicit cardinality constraints, the BN import
schema has no non-trivial cardinality constraints. However, bi:city logically im-
plies that ⊤ (≤k bi:city), where k is any positive integer. Hence, bi:city trivially
implies maxCardinality constraints of the form e (≤k bi:city), where e is any concept
expression and k is any positive integer. Likewise, bi:city trivially implies disjoint-
ness constraints of the form sr:city | C, where C is any expression. Any of these con-
straints need not be made explicit since they will be in the theory of the constraints of the
BN import schema. Similar observations apply to bi:city .

We translate the set of constraints of the BN import schema to the vocabulary of the
Sales/BN mediated schema simply by replacing bi:Book by sr:Book, etc. This results in

the set of constraints B, where

(16) sr:title sr:Product (in B)

(17) sr:title string (in B)

(18) sr:city (in B)

(19) sr:city (in B)

(20) sr:Book sr:Product (in B)

(21) sr:Music sr:Product (in B)

Now, recalling that sr:city is an empty property in the BN import schema, Th(B) also
contains

(22) sr:city sr:Book (in Th(B))

(23) sr:city string (in Th(B))

(24) sr:city (1 sr:title) (in Th(B))

We also translate the set of constraints of the old Sales mediate schema, shown in Fig-
ure 5(b), to the vocabulary of the Sales/BN mediated schema, obtaining the set of con-

straints S, where

(25) sr:title sr:Product (in S)

(26) sr:title string (in S)

(27) sr:city sr:Product (in S)

(28) sr:city string (in S)

(29) sr:Product (1 sr:title) (in S)

25

(30) sr:Book (1 sr:city) (in S)

(31) sr:Book sr:Product (in S)

(32) sr:Music sr:Product (in S)

(33) sr:Book | sr:Music (in S)

Observe that, by (27) and (29), Th(S) contains the following constraint:

(34) sr:city (1 sr:title)

The constraints of the (revised) Sales/BN mediated schema are then computed as:

SCr = B S = Th(B) Th(S)

Figure 5(k) lists the constraints in SCr. By inspection, observe that

SCr = Th(B) Th(S) contains:

 the domain and range constraints for sr:title, by (16), (17), (25) and (26)

 the domain and range constraints for sr:city, by (22), (23), (27) and (28)

 the subset constraints for sr:Product, by (20), (21), (31) and (32)

 a single cardinality constraint, of a rather unanticipated nature, by (24) and (34)

 no disjointness constraints since Th(S) does not contain any of the trivial disjointness

constraints in Th(B) of the form sr:city | C or of the form sr:city
 | C, where C is

any expression.

4.2 Computing the Greatest Lower Bound of Two Sets of Constraints

The solution to the least constraint revision problem, outlined up to this point, gives no
indication on how to generate the revised set of constraints of the mediated schema. In
this section, we then show how to compute the g.l.b. of two sets of constraints, with the
help of examples. In the Appendix, we prove the results that justify the techniques intro-
duced.

Recall from Section 3.2 that the constraints of a schema are of one of the following
forms:

 P D (property P has domain D)

 P R (property P has range R)

 sr:title sr:Product

 sr:title

 string

 sr:city sr:Product
 sr:city

 string

 sr:city (1 s:title)

sr:Book sr:Product
sr:Music sr:Product

Fig.5(k). Constraints of the revised Sales/BN mediated schema.

26

 C (k P) or C (k P)

(P or P maps each individual in C to at least k distinct individuals)

 C (k P) or C (k P)

(P or P maps each individual in C to at most k distinct individuals)

 C D (class C is a subclass of class D)

 C | D (classes C and D are disjoint)

We also admit constraints of one of the forms:

 C (class C is always empty)

 P or P (property P is always empty, i.e.,
 P has an empty domain or an empty range)

We normalize a set of constraints by rewriting:

 P D as (1 P) D

 P R as (1 P) R

 C (k P) as C (k+1 P)

 C (k P) as C (k+1 P)

 C | D as C D (or, equivalently, D C)

 P as (1 P)

 P as (1 P)

We observe that, after normalization, negated expressions (including the bottom con-

cept) occur only on the right-hand side of the constraints.

The question of computing the greatest lower bound of two sets of constraints is not
straightforward since constraints may interact in unanticipated ways, as the following
simple example illustrates.

Example 5: Suppose that ={ A B , A C , B | C }. Since B and C are disjoint and A is a

subset of both B and C, the set of constraints implies that A will always be empty, that

is, A .

As a second example, assume that ={ A (m P) , A (n P) }. Suppose that m<n.

Then, since (m P) and (n P) denote disjoint sets, and A is a subset of both constraints,

we again have that A .

Finally, note that A logically implies A e, for any expression e, which affects how

we compute Th() and, consequently, how we compute , where is a second set of

constraints.

27

The first sequence of definitions indicates how to construct a graph that captures the
structure of a set of constraints.

We say that the complement of a non-negated expression e is e, and vice-versa; fur-

thermore, the complement of is ⊤, and vice-versa. We denote the complement of an ex-
pression c by c . A constraint expression is an expression that may occur on the right- or
left-hand sides of a normalized constraint.

Let be a set of normalized constraints and be a set of constraint expressions (we

leave the alphabet understood from the context). The labeled graph g(,)=(,,) that

captures and , where labels each node with an expression, is defined as follows:

(i) For each concept expression e that occurs on the right- or left-hand side of an inclu-

sion in , or that occurs in , there is exactly one node in labeled with e.

(ii) For each atomic role P, there is exactly one node in labeled with P (this is just a
theoretical convenience, explored in the appendix).

(iii) If there is a node in labeled with a concept expression e, then there must be exact-

ly one node in labeled with e .

(iv) For each constraint e f in , there is an arc (M,N) in , where M and N are the
nodes labeled with e and f, respectively.

(v) If there are nodes M and N in labeled with (m p) and (n p), where p is either P or

P and m<n, then there is an arc (N,M) in .

(vi) If there is an arc (M,N) in , where M and N are the nodes labeled with e and f re-

spectively, then there is an arc (K,L) in , where K and L are the nodes labeled

with f and e , respectively.

(vii) These are the only nodes and arcs of g().

The labeled graph G(,)=(,,) that represents and , where labels each node

with a set of expressions, is defined from g(,) by collapsing each clique of g(,) into a
single node labeled with the expressions that previously labeled the nodes in the clique.

When is the empty set, we simply write G() and say that the graph represents .

If a node K of G(,) is labeled with an expression e, then K denotes the node labeled

with e (which may be K itself). We say that K and K are dual nodes of G(,).

A node K of G(,) is a -node with level n, for a non-negative integer n, iff one of the
following conditions hold:

(i) K is is a -node with level 0 iff

a. K is labeled with , or

b. There are nodes M and N, not necessarily distinct from K, and a non-negated

concept expression h such that M and N are respectively labeled with h and h,

and there are paths in G(,) from K to M and from K to N.

28

(ii) K is is a -node with level n+1 iff

a. There is a -node M of level n, distinct from K, such that there is a path in G(,)

from K to M, and M is the -node with the smallest level such that there is a path

in G(,) from K to M, or

b. K is labeled with a minCardinality constraint of the form (1 P) (or of the form (1

P)) and there is a -node M of level n, distinct from K, such that M is labeled

with (1 P) (or with (1 P)), and M is the -node with the smallest level labeled

with (1 P) or (1 P).

A node K is a -node iff K is a -node with level n, for some non-negative integer n,

and K is a ⊤-node iff K is a -node.

Proposition 5 in the appendix lists the properties of G(,) that matter to our formal
development. An informal account of some properties that help understand the construc-

tion of G(,) is:

 There is a path in G(,) from a node labeled with e to a node labeled with f iff there is

a path in G(,) from a node labeled with f to a node labeled with e .

 If two concept expressions, e and f , label the same node of G(,), then e f, that is,

 forces e and f to denote the same set of individuals.

 If a concept expression e labels a -node with level 0 of G(,), then e , that is,
forces e to denote an empty set of individuals.

 If there is a path in G(,) from a node labeled with e to a node labeled with f, then
e f.

Example 6: Consider the constraints of the Sales mediated schema, listed in Figure
5(b). Abbreviate the names of the classes and properties by just their first letter, ignoring

the namespace prefix. Let be the set obtained by normalizing such constraints:

(1) t P normalized as: (1 t) P

(2) t S normalized as: (1 t) S

(3) c P normalized as: (1 c) P

(4) c S normalized as: (1 c) S

(5) P (1 t) normalized as: P (2 t)

(6) B (1 c)

(7) B P

(8) M P

(9) B | M normalized as: B M

29

Figure 6 depicts g(), the graph capturing , using the normalized form of the con-

straints. In this case, g() is equal to G(), the graph representing . By inspecting G(),
note that:

 There is a path from the node labeled with (1 c) to the node labeled with (2 t),
which implies that

(10) (1 c) (2 t)

 There are paths from the node K labeled with (2 t) to the node labeled with P and the

node labeled with P. Hence, K is a -node with level 0, which implies that

(11) (2 t)

Intuitively, t never maps an individual to two or more individuals, in the presence of

the constraints in .

Example 7: Consider the constraints of the BN import schema, listed in Figure 5(j), and
again abbreviate the names of the classes and properties by just their first letter, ignoring

the namespace prefix for the moment. Let be the set obtained by normalizing such con-
straints:

(12) t P normalized as: (1 t) P

(13) t S normalized as: (1 t) S

(14) c normalized as: (1 c)

(15) c normalized as: (1 c)

(16) B P

(17) M P

t c

(1

t

)

Fig. 6. The graph G() that represents .

B (1
c)

B

(
2 t)

M M

(2 t)

S (1

c

)

(1

c

)

(1
t)

(1
t)

(1
c)

P P

S

(1

t

)

t c

(1 t

)

Fig. 6. The graph G() that represents .

B (1 c)

B

(2 t)

M M

 (2 t)

S (1 c

)

(1 c

)

(1 t)

(1 t)

(1 c)

P P

S

(1 t

)

30

Figure 7 depicts the graph G() representing (using the normalized form of con-

straints).

Let be a set of normalized constraints. The computation of Th() is based on the follow-
ing result, which Example 6 already partly illustrates.

Theorem 2: Let be a set of normalized constraints. Let e f be a constraint and = {e,f}.

Let G(,) be the graph that represents and . Then, e f iff one of the following
conditions holds:

(i) The node of G(,) labeled with e is a -node; or

(ii) The node of G(,) labeled with f is a ⊤-node; or

(iii) There is a path in G(,) from the node labeled with e to the node labeled with f .

Corollary 1: Let be a set of normalized constraints. Let e f be a constraint and = {e,f}.

Let G(,) be the graph that represents and , and G() be the graph that represents

. Suppose that e f. Then:

(a) Either e labels a node of G() or e is of the form (k P) and there is a node of G()

labeled with (j P), where j<k.

(b) Either f labels a node of G() or f is of the form (n P) and there is a node of G()

labeled with (m P), where m<n.

Let 1 and 2 be two sets of normalized constraints. Let G(1) and G(2) be the graph

that represent 1 and 2. Denote their transitive closure by G*(1) and G*(2). Based on

Theorem 2 and Corollary 1, we then construct a set of constraints that generates the g.l.b.

of 1 and 2 as follows:

t

M

(1 t

)

M

B B

(1 c)
t)

Fig. 7. The graph G() that represents .

P

S S

P

(1 t)

(1 c)

c

(1 t

)

⊤

(1 t)

(1 c

)

(1 c

)

t)

31

 A constraint e f is in iff there are i, j{1,2}, with ij, such that one of the following
conditions holds

(a) There is a -node M of G(i) and a -node P of G(j) and

 e is a non-negated constraint expression that labels both M and P

 f is the bottom concept

(b) There is a -node M of G(i) and an arc (P,Q) of G*(j) such that P is not a -node

of G(j) and

 e is a non-negated constraint expression that labels both M and P

 f is a constraint expression that labels Q

(c) There is a ⊤-node N of G(i) and an arc (P,Q) of G*(j) such that Q is not a ⊤-node

of G(j) and

 e is a non-negated constraint expression that labels P

 f is a constraint expression that labels both N and Q

(d) There is an arc (M,N) of G*(i) and an arc (P,Q) of G*(j) such that M, N, P or Q is

not a -node or a ⊤-node and

 e is a non-negated constraint expression that labels both M and P

 f is a constraint expression that labels both N and Q

Note that is a (normalized) set of constraints since, by construction, e is always a
non-negated constraint expression and f is a constraint expression. Furthermore, note that

 can be constructed in O(n2), where n=max(n1,n2) and ni is the number of nodes of G(i).

However, we do not claim that is the best set of constraints that generates , in the

sense of having the smallest number of constraints. Corollary 2 indicates that is correct-

ly constructed, in the sense that Th() = = Th() Th(), and follows from Theo-

rem 2, Corollary 1 and the definition of .

Corollary 2: Let 1 and 2 be two sets of normalized constraints. Let be the set of con-

straints that generates the g.l.b. of 1 and 2. Then, we have

(i) Th() = 1 2.

(ii) Let e f be a constraint and = {e,f}. Let G(,) be the graph that represents and

. Then, e f is in 1 2 iff one of the conditions holds:

(a) The node of G(,) labeled with e is a -node; or

(b) The node of G(,) labeled with f is a ⊤-node; or

32

(c) There is a path in G(,) from the node labeled with e to the node labeled with f.

We close the section with a final example that illustrates how to systematically obtain
the set of constraints of the (revised) Sales/BN mediated schema informally derived in
Step (C) of Example 4.

Example 8: Let be the set of normalized constraints of Example 6, and be the set of
normalized constraints of Example 7. Figure 5(k) shows the set of (unnormalized) con-

straints that generates the g.l.b. of and . Again abbreviating the names of the classes

and properties by their first letter, and ignoring the namespace prefix, the constraints in
are:

(1) t P normalized as: (1 t) P

(2) t S normalized as: (1 t) S

(3) c P normalized as: (1 c) P

(4) c S normalized as: (1 c) S

(5) c (≤1 t) normalized as: (1 c) (2 t)

(6) B P

(7) M P

Consider the graph G() of Figure 6 and the graph G() of Figure 7. We systematically

construct as follows. Tables 1(a) and 1(b) show the arcs of G*() and G*(). Note that a
tabular presentation of the arcs, as opposed to a graphical representation, is much more
convenient since we are working with transitive closures. For example, line 3 of Table 1(a)

indicates that G*() has arcs from the node labeled with B to the three nodes respectively la-

beled with (1 c), P and M.

In this specific example, Table 1(c) induces as follows:

(8) Lines 1, 7, 9 and 12 are discarded since they correspond to arcs in just one of the

graphs G*() or G*().

(9) Lines 2 and 5 are discarded since they have a negated expression on the left-hand
side cell.

(10) Lines 8 and 11 correspond to Case (b) of the definition of .

(11) Lines 3, 4, 6 and 10 correspond to Case (d) of the definition of . The case corres-
ponding to lines 2 and 5 deserves an additional comment. Consider line 5, for ex-

ample. Note that the pair (S, (1 t)) occurs in line 5 in Tables 1(a) and 1(b). Howev-

er, we need note add S (1 t) to since line 10 forces the addition of the equiva-

33

lent constraint (1 t) S. Finally, we warn the reader that the example does not il-

lustrate all cases of the definition of .

Table 1: Construction of the set of constraints that generates .

 (a) G*() (b) G*() (c)

1 P (2 t)

2 P (1 t)

(2 t)

(1 c)

B

M

 P (1 t)

B

M

3 B (1 c)
P

M

 B P B P

4 M B

P

(2 t)

 M P M P

5 S (1 t)

(1 c)

 S (1 t)

6 (1 t) P

(2 t)
 (1 t) P (1 t) P

7 (1 t) (2 t)

8 (1 c) P

(2 t)
 (1 c) (1 c) P

(2 t)

9 (1 c) B

10 (1 t) S (1 t) S (1 t) S

11 (1 c) S (1 c) (1 c) S

12 ⊤ (1 c)

(1 c)

34

5 Conclusions

In this paper, we addressed the problem of changing the constraints of a mediated sche-
ma to accommodate the set of constraints of a new export schema. We argued that such
problem can be solved by computing the greatest lower bound of two sets of constraints.
The approach we took to define the mediation environment is akin to the idea of exact
views. Yet, we considered that constraints should be included in the mediated schema to
capture the common semantics of the data sources.

For the family of extralite schema, we described efficient procedures to decide logical
implication and to compute the greatest lower bound of two sets of constraints. The pro-
cedures essentially explore the structure of a set of constraints, captured as a graph. How-
ever, cardinality constraints posed considerable technical problems to the proof of the
theorems, which we overcame with the help of the notion of canonical Herbrand interpre-
tation, introduced in the appendix. These developments are new, and cover an expressive
and useful family of constraints, which justifies the proofs included in the appendix.

As for future work, we plan to extend the schema matching framework described in
[20] to a full-fledged tool that helps create mediation environments, by including the
strategy described in this paper. Additional work should also be devoted to minimize the

set of constraints that generates , which will require a careful analysis of the graphs

that represent and .

Acknowledgements. This work was partly supported by CNPq under grants
301497/2006-0, 473110/2008-3, 557128/2009-9, FAPERJ E-26/170028/2008, and
CAPES/PROCAD NF 21/2009.

References

1. Amann, B.; Beeri, C.; Fundulaki, I; Scholl, M. (2002) “Querying xml sources using an ontology-
based mediator”. In: CoopIS/DOA/ODBASE, pp. 429–448.

2. Aspvall, B.; Plass, M.F; Tarjan, R.E. (1979) “A Linear-Time Algorithm for Testing the Truth of
Certain Quantified Boolean Formulas”. Information Processing Letters, Vol. 8, No. 3 (March
1979), pp. 121–123.

3. Atzeni, P.; Cappellari, P.; Torlone, R.; Bernstein, P.A.; Gianforme, G. (2008) “Model-
independent schema translation”. The VLDB Journal, Vol. 17, No. 6, pp. 1347–1370.

4. Baader, F.; Nutt, W. (2003) “Basic Description Logics”. In: Baader, F.; Calvanese, D.; McGui-
ness, D.L.; Nardi, D.; Patel-Schneider, P.F. (Eds) The Description Logic Handbook: Theory, Imple-
mentation and Applications. Cambridge University Press, Cambridge, UK.

5. Bernstein, P.; Melnik, S. (2007) “Model management 2.0: manipulating richer mappings”. In:
Proc. 27th ACM SIGMOD Int’l. Conf. Management of Data, Beijing, China, pp. 1–12.

6. Bilke A. (2007): Duplicate-based Schema Matching. PhD Thesis. Berlin University.

7. Breitman, K.; Casanova, M.; Truszkowski, W. (2007) Semantic web: concepts, technologies, and ap-
plications. Springer, London.

35

8. Bilke, A.; Naumann, F. (2005) “Schema matching using duplicates”. In: Proc. 21st Int'l. Conf. on
Data Engineering (Apr 2005), pp. 69–80.

9. Brauner, D.F.; Casanova, M.A.; Milidiu, R. (2007) “Towards Gazetteer Integration Through an
Instance-based Thesauri Mapping Approach”. In: Clodoveu A. Davis Jr; Antonio M.V.M. Mon-
teiro. (eds.). Advances in Geoinformatics. Heidelberg: Springer, 2007, pp. 235–245.

10. Brauner, D.F.; Gazola, A.; Casanova, M.A.; Breitman, K.K. (2008) “Adaptative Matching of Da-
tabase Web Services Export Schemas”. In: Proc. of ICEIS 2008 – Tenth International Conference
on Enterprise Information Systems. Lisboa: INSTICC – Institute for Systems and Technologies
of Information, Control and Communication, 2008. pp.49 – 56.

11. Calì, A., Calvanese, D., De Giacomo, G., Lenzerini, M. (2002) “Data Integration under Integrity
Constraints”. In: Proc. 14th Int. Conf. on Advanced Information Systems Engineering (CAiSE
2002). Volume 2348 of Lecture Notes in Computer Science.

12. Calì, A.; Calvanese, D.; De Giacomo, G.; Lenzerini, M.; Naggar, P.; Vernacotola, F. (2003) “IBIS:
Semantic data integration at work”. In: Proc. of the 15th Int. Conf. on Advanced Information
Systems Engineering (CAiSE 2003), pp. 79–94.

13. Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.; Poggi, A.; Rosati, R.; Ruzzi, M.
(2008). “Data Integration through DL-Lite-A Ontologies”. In: Proc. 3rd Int’l. Workshop on Se-
mantics in Data and Knowledge Bases, pp. 26–47.

14. Casanova, M.A.; Breitman, K.K.; Brauner, D.F.; Marins, A. (2007) “Database Conceptual Sche-
ma Matching”. Computer (Long Beach), v. 40, pp. 102–104.

15. Chawathe, S.S.; Garcia-Molina, H.; Hammer, J.; Ireland, K.; Papakonstantinou, Y.; Ullman, J.D.;
Widom, J. (1994) “The TSIMMIS project: Integration of heterogeneous information sources”. In:
Proc. 10th Meeting of the Information Processing Society of Japan (IPSJ’94), pp. 7–18.

16. Donini, F.M. (2003) “Complexity of Reasoning”. In: Baader, F.; Calvanese, D.; McGuiness, D.L.;
Nardi, D.; Patel-Schneider, P.F. (Eds) The Description Logic Handbook: Theory, Implementation and
Applications. Cambridge University Press, Cambridge, UK.

17. Euzenat, J.; Shvaiko, P. (2007) Ontology matching. Springer-Verlag.

18. Franconi, E. (2002) "Structural Description Logics: FL-". In: Description Logics Course. Available
at: http://www.inf.unibz.it/~franconi/dl/course/slides/struct-DL/flminus.pdf

19. Garcia-Molina, H.; Papakonstantinou, Y.; Quass, D.; Rajaraman, A.; Sagiv, Y.; Ullman, J.D.;
Vassalos, V.; Widom, J. (1997) “The TSIMMIS approach to mediation: Data models and lan-
guages”. J. of Intelligent Information Systems, Vol. 8, No. 2, pp. 117–132.

20. Gomes, R.V.; Leme, L.A.P.P; Casanova, M.A. (2010) “MatchMaking – A Tool to Match OWL
Schemas”, Journal of Theoretical and Applied Informatics (ER2009 Posters and Demos session), 17.

21. Goasdoué, F.; Lattes, V.; Rousset, M-C. (2000) “The use of CARIN language and algorithms for
information integration: The Picsel system”. Int. J. of Cooperative Information Systems, Vol. 9, No.
4, pp. 383–401.

22. Halevy A. (2001) “Answering queries using views: A survey”. VLDB Journal, Vol. 10, No. 4, pp.
270–294.

23. Hartmanna, S.; Linkb, S.; Trinha, T. (2009) “Constraint acquisition for Entity-Relationship mod-
els” , Data & Knowledge Engineering, Volume 68, Issue 10, October 2009, pp. 1128-1155.

24. Hick, J-M.; Hainauta, J-H. (2006) “Database application evolution: A transformational ap-
proach”, Data & Knowledge Engineering, Volume 59, Issue 3, December 2006, pp. 534-558.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Giacomo:Giuseppe_De.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lenzerini:Maurizio.html

36

25. Köpcke, H.; Rahma, E. (2010) “Frameworks for entity matching: A comparison”, Data & Know-
ledge Engineering, Volume 69, Issue 2, February 2010, pp. 197-210.

26. Lauschner, T.; Casanova, M.A.; Vidal, V.M.P.; Macedo, J.A. (2009) “Efficient Decision Proce-
dures for Query Containment and Related Problems”. In: Proc. XXIV Brazilian Symposium on
Databases, Fortaleza. Oct. 2009

27. Leme, L. A. P.; Brauner, D. F.; Breitman, K. K.; Casanova, M. A., and Gazola, A. “Matching
object catalogues”. J. Innovations in Systems and Software Engineering 4(4), Springer, pp. 315–328.

28. Leme, L.A.P.; Casanova, M.A.; Breitman, K.K; Furtado, A.L. (2009) “Instance-based OWL
Schema Matching”. Proc. 11th Int’l. Conf. on Enterprise Inf. Systems, Milan, Italy.

29. Lenzerini, M. (2002) “Data Integration: A Theoretical Perspective”. In: Proc. ACM Symposium
on Principles of Database Systems.

30. Leone, N.; Eiter, T.; Faber, W.; Fink, M.; Gottlob, G.; Greco, G.; Kalka, E.; Ianni, G.; Lembo, D.;
Lenzerini, M.; Lio, V.; Nowicki, B.; Rosati, R.; Ruzzi, M.; Staniszkis, W.; Terracina, G. (2005)
“The INFOMIX system for advanced integration of incomplete and inconsistent data”. In: Proc.
of the ACM SIGMOD Int. Conf. on Management of Data, pp. 915–917.

31. Levesque, H.J.; Brachman, R.J. (1987) “Expressiveness and tractability in knowledge represen-
tation and reasoning”. Computational Intelligence 3, p. 78-93.

32. Lonsdale, D.; Embley, D.W.; Dinga, Y.; Xub, L.; Heppc,M. (2010) “Reusing ontologies and lan-
guage components for ontology generation”, Data & Knowledge Engineering, Vol. 69, Issue 4,
April 2010, pp. 318-330.

33. Manolescu, I.; Florescu, D.; Kossmann, D.; Xhumari, F.; Olteanu, D. (2000) “Agora: Living with
XML and Relational”. In: Proc. 26th Int. Conf. on Very Large Data Bases, pp. 623-626.

34. Madhavan J.; Bernstein, P.A.; Rahn, E. (2001) “Generic schema matching with Cupid”. In: Proc.
27th Int'l. Conf. on Very Large Data Bases, pp. 49–58.

35. Melnik, S.; Garcia-Molina, H.; Rahm, E. (2002) “Similarity flooding: a versatile graph matching
algorithm and its application to schema matching”. In: Proc. 18th Int'l. Conf. on Data Enginee-
ring, pp. 117–128.

36. Nardi, D.; Brachman, R.J. (2003) “An Introduction to Description Logics”. In: Baader, F.; Calva-
nese, D.; McGuiness, D.L.; Nardi, D.; Patel-Schneider, P.F. (Eds) The Description Logic Handbook:
Theory, Implementation and Applications. Cambridge University Press, Cambridge, UK.

37. Papotti, P.; Torlone, R. (2009) “Schema exchange: Generic mappings for transforming data and
metadata”, Data & Knowledge Engineering, Volume 68, Issue 7, July 2009, pp. 665-682.

38. Qi He, O.; Linga, T.W. (2006) “An ontology based approach to the integration of entity–
relationship schemas”, Data & Knowledge Engineering, Vol. 58, Issue 3, Sept. 2006, pp. 299-326.

39. Rahn, E.; Bernstein, P. (2001) “A survey of approaches to automatic schema matching”. The
VLDB Journal 10, 4 (2001), pp. 334–350.

40. Rull, G.; Farré, C.; Teniente, E.; Urpí, T. (2008) “Validation of mappings between schemas”,
Data & Knowledge Engineering, Volume 66, Issue 3, September 2008, pp. 414-437.

41. Simperla, E. (2009) ”Reusing ontologies on the Semantic Web: A feasibility study”, Data &
Knowledge Engineering, Volume 68, Issue 10, October 2009, pp. 905-925.

37

42. Wang, J.; Wen, J.; Lochovsky, F.; Ma, W. (2004) “Instance-based schema matching for web da-
tabases by domain-specific query probing”. In: Proc. 13th Int'l. Conf. on Very Large Data Bases
(Aug 2004), pp. 408–419.

43. Zhaoa, H.; Ramb, S. (2007) ”Combining schema and instance information for integrating hete-
rogeneous data sources”, Data & Knowledge Engineering , Vol. 61, Issue 2, May 2007, pp 281-303.

38

Appendix - Proofs of the Main Results

A.1 Proof of Theorem 1

In this section, we prove Theorem 1 that states that the revised set of constraints of the
mediated schema can be taken as the g.l.b. of the current set of constraints of the
mediated schema and the set of constraints of the new import schema, without impairing
consistency preservation. We follow the same notation as in Section 4.1, not repeated here
for brevity.

Theorem 1: Let MCr = IC0[IV0→MVr] MC+[MV+→MVr]. Suppose that:

(i) (Domain Disjointness Assumption) Any pair of interpretations for V and V0 have
disjoint domains.

(ii) The mediated mapping and the local mapping 1,...,n induce a mapping from
consistent states of E1,...,En into consistent states of M.

(iii) The local mapping 0 induces a mapping from consistent states of E0 into consis-
tent states of I0.

Then, the revised mediated mapping r and the local mappings 0,1,...,n induce a
mapping from consistent states of EC0, EC1,..., ECn into states of the revised mediated
schema that satisfy MCr.

Proof

Let Th(MCr). Then, by definition of g.l.b., we have:

 Th(IC0[IV0→MVr])

 Th(MC+[MV+→MVr])

But, by definition of the canonical translation functions, we have:

 Th(IC0[IV0→MVr]) iff [MVr→IV0] Th(IC0)

 Th(MC+[MV+→MVr]) iff [MVr→MV+] Th(MC+)

Let k=0,…,n. Let sk be a consistent state of Ek. Since k preserves consistency,)(k ks = tk

is a consistent state of Ik. Furthermore, since preserves consistency,),...,(n1 ss = s is a

consistent state of M. Note that, by definition of MC+, s is also consistent with respect to
MC+.

Therefore, we have

 s0 [MVr→ IV0]

 s [MVr→MV+]

39

Recall that [MVr→MV+ IV0] denotes the constraint obtained from by replacing

each class r
iC of MVr by the union expression 0

iC Ci, where 0
iC and Ci respectively are the

classes of I0 and M that match r
iC , and likewise for the properties of MVr. Note that

[MVr→MV+ IV0] is a constraint written in MV+ IV0, the union of the vocabularies
MV+ and IV0.

Let s t0 denote the interpretation for MV+ IV0 induced by s and t0 in the obvious
way. Then, using the domain disjointness assumption, we can prove that:

 s t0 [MVr→MV+ IV0]

Now, by definition by definition of r , from (7), we finally have:

 r (s, t0)

Therefore, recalling that),...,(n1 ss = s, we finally have that r (),...,(n1 ss , t0) is a con-

sistent state of Mr, as desired.

A.2 Proof of Theorem 2

In this section, we prove Theorem 2, which leads to efficient ways to construct the theory
of a set of constraints, and to construct the greatest lower bound of two sets of constraints.
To facilitate reading the section, we start by repeating a few definitions already intro-
duced in Section 4.2.

We say that the complement of a non-negated expression e is e, and vice-versa; fur-

thermore, the complement of is ⊤, and vice-versa. If c is an expression, we denote its
complement by c .

A constraint expression is an expression that may occur on the right- or left-hand sides
of a normalized constraint.

Let be a set of normalized constraints and be a set of constraint expressions (we
leave the alphabet understood from the context).

Definition 1: The labeled graph g(,)=(,,) that captures and , where labels each
node with an expression, is defined as follows:

(i) For each concept expression e that occurs on the right- or left-hand side of an in-

clusion in , or that occurs in , there is exactly one node in labeled with e.

(ii) For each atomic role P, there is exactly one node in labeled with P (this is just a
theoretical convenience, explored in Definitions 6, 7 and 8).

(iii) If there is a node in labeled with a concept expression e, then there must be ex-

actly one node in labeled with e .

(iv) For each inclusion e f in , there is an arc (M,N) in , where M and N are the
nodes labeled with e and f, respectively.

40

(v) If there are nodes M and N in labeled with (m p) and (n p), where p is either P

or P and m<n, then there is an arc (N,M) in .

(vi) If there is an arc (M,N) in , where M and N are the nodes labeled with e and f re-

spectively, then there is an arc (K,L) in , where K and L are the nodes labeled

with f and e , respectively.

(vii) These are the only nodes and arcs of g().

Definition 2: The labeled graph G(,)=(,,) that represents and , where labels

each node with a set of expressions, is defined from g(,) by collapsing each clique of

g(,) into a single node labeled with the expressions that previously labeled the

nodes in the clique. When is the empty set, we simply write G() and say that the

graph represents .

If a node K of G(,) is labeled with an expression e, then K denotes the node labeled

with e (which may be K itself). We say that K and K are dual nodes of G(,). We use

K→M to indicate that there is a path in G(,) (or in g(,)) from K to M, and K↛M to

indicate that no such path exists. Also, to simplify the notation, we use e→f to denote that

there is a path in G(,) (or in g(,)) from the node labeled with e to the node labeled

with f, and e↛f to indicate that no such path exists.

Definition 3: Let G(,)=(,,) be the labeled graph that represents and . We say that

a node K of G(,) is a -node with level n, for a non-negative integer n, iff one of the
following conditions hold:

(i) K is is a -node with level 0 iff

a. K is labeled with , or

b. There are nodes M and N, not necessarily distinct from K, and a non-negated concept

expression h such that M and N are respectively labeled with h and h, and K→M

and K→N.

(ii) K is is a -node with level n+1 iff

a. There is a -node M of level n, distinct from K, such that K→M, and M is the -

node with the smallest level such that K→M, or

b. K is labeled with a minCardinality constraint of the form (1 P) (or of the

form (1 P)) and there is a -node M of level n, distinct from K, such that M is

labeled with (1 P) (or with (1 P)), and M is the -node with the smallest

level labeled with (1 P) or (1 P).

41

In view of Case (ii-b), the notion of level is necessary to avoid a circular definition. In

Case (i-b), note that, if K=M=N, then K is labeled with both h and h; other special cases

occur when K=M, and when K=N. Also note that K may be labeled with both (1 P) and

(1 P), and yet be a -node by virtue of Cases (i) and (ii-a), but not because of Case (ii-b).

Definition 4: Let G(,)=(,,) be the labeled graph that represents and . Let K be a

node of G(,). We say that

(i) K is a -node iff K is a -node with level n, for some non-negative integer n.

(ii) K is a role -node iff K is labeled with an atomic role P and the node labeled with

(1 P) is a -node.

(iii) K is a ⊤-node iff K is a -node.

(iv) K satisfies the consistency check iff K is not a -node.

(v) K satisfies the dual of the consistency check iff K is not a ⊤-node.

(vi) G(,) satisfies the consistency check iff all nodes labeled with an atomic concept or

with a minCardinality of the form (1 P) satisfy the consistency check.

We are now ready to prove the major results of the paper. To avoid repetitions, in

what follows, let be a set of normalized constraints and be a set of constraint expres-

sions. Let G(,) be the graph that represents and .

Proposition 5:

(i) G(,) is acyclic.

(ii) For any pair of nodes M and N, we have that MN iff N M .

(iii) For any node K of G(,), for any expression e, we have that e labels K iff e la-

bels K .

(iv) For any node K of G(,),

(a) K is labeled only with , or

(b) K is labeled only with ⊤, or

(c) K is labeled only with a single atomic role, or

(d) K is labeled only with non-negated concept expressions, which must be atomic

concepts or minCardinality constraints of the form (m p), where p is either P

or P and m 1, or

42

(e) K is labeled only with negated concept expressions, which must be negated

atomic concepts or minCardinality constraints of the form (m p), where p is

either P or P and m 1.

(v) For any pair of nodes M and N of G(,), for any pair of expressions e and f that

label M and N, respectively, if M→N then e f.

(vi) For any node K of G(,), for any pair of expressions e and f that label K, e f.

(vii) For any node K of G(,), for any expression e that labels K, if K is a -node, then
 e .

(viii) For any node K of G(,), for any expression e that labels K, if K is a ⊤-node, then

 ⊤ e.

(ix) For any node K of G(,) labeled with an atomic role P, if K is a role -node, then

any model s of is such that s(P) = .

(x) Let K be a node of G(,). Assume that K is a -node and K is not labeled with .
Then, K is labeled only with atomic concepts or minCardinality constraints of the

form (m p), where p is either P or P and m 1.

(xi) Let L be a node of G(,). Assume that L is a ⊤-node and L is not labeled with ⊤.
Then, L is labeled only with negated atomic concepts or negated minCardinality

constraints of the form (m p), where p is either P or P and m 1.

Proof

(i), (ii), (iii) All three properties follow directly from the definition of G(,).

(iv-a) Let K be a node of g(,). Assume that K is labeled with . Since occurs only in

constraints of the form e , g(,) has no arcs leaving K. Therefore, K is the single node

of a clique of g(,). Therefore, K is a node of G(,) and K is labeled only with .

(iv-b) Let K be a node of g(,). Assume that K is labeled with ⊤. By (iii), K is labeled

with . Hence, by (iv-a), K is only labeled with . Consequently, K is only labeled with ⊤.

(iv-c) Let K be a node of g(,). Assume that K is labeled with an atomic role P. Then,

there are no arcs touching K. Therefore, K is the single node of a clique of g(,). There-

fore, K is a node of G(,) and K is labeled only with P.

(iv-d) Let K be a node of G(,). Assume that K is labeled with a non-negated concept
expression e.

43

Suppose that K is labeled with a negated expression f. By (iv-a), f cannot be . Then, f is

of the form D or (m p). Furthermore, since e and f both label node K of G(,), there

must be path e→f and f→e in g(,).

By construction of G(,), and since f→e, there is a sequence of expressions h0, h1,…,hm

such that h0 = f, hm =e and (hi-1, hi) is an arc of g(,).

But, if (a,b) is an arc of g(,) such that a is a negated expression, then b is also a ne-

gated expression. Indeed, let (a,b) be an arc of g(,) and assume that a is a negated ex-

pression. Then, since (a,b) is an arc of g(,), either: (1) a b is in ; or (2) b a is in ; or

(3) a is of the form (m p) and b is of the form (n p), with m<n. But no constraint in

has a negated expression (including the bottom concept) on the left-hand side. Hence,
hypothesis (1) is ruled out, since a is negated by assumption. Likewise, in hypothesis (2),

b must be positive, that is, b must be a negated expression. In case (3), b is already a ne-

gated expression of the form (n p). Therefore, b is always a negated expression.

Therefore, by induction, since f is a negated expression by assumption, we may con-
clude that hm is a negated expression, that is, e is a negated expression, which contradicts
the assumption that e is a non-negated concept expression.

Therefore, we may conclude that f cannot be of the form D or (m p). Thus, if K is
labeled with a non-negated concept expression, then K is labeled only with non-negated

concept expressions. Since such non-negated expressions occur in the constraints of ,

they must be atomic concepts or minCardinality constraints of the form (m p), where p is

either P or P and m 1.

(iv-e) Let K be a node of G(,). Assume that K is labeled with a negated concept expres-
sion e.

By (iii), K is labeled with e , which is non-negated. Therefore, by (iv-d), K is labeled on-
ly with non-negated concept expressions. Hence, by (iii) again, K is labeled only with ne-
gated concept expressions, which must be negated atomic concepts or minCardinality

constraints of the form (m p), where p is either P or P and m 1.

(v), (vi) First observe that, if there is an arc (K,L) of g(,), with K and L labeled with c

and d, then c d. Hence, for any pair of nodes M and N of g(,), for any pair of ex-

pressions e and f that label M and N, respectively, if there is a path from M to N in g(,)

then e f, by the transitivity of . Then, properties (v) and (vi) follow by the con-

struction of G(,).

(vii) Let K be a node of G(,) and e be an expression that labels K. Assume that K is a -

node. The proof follows by induction on the -level of K.

Basis: K has -level 0.

Case B.1: K is labeled with .

Then, by (vi), e , which trivially implies that e .

44

Case B.2: There are nodes M and N and a non-negated concept expression h such that M and N are

respectively labeled with h and h, and K→M and K→N.

Then, by (v), e h and e h, which implies that e .

Induction hypothesis: Assume that the property holds when K has -level n.

Induction step: Assume that K has -level n+1.

Case I.1: There is a -node M such that K→M

Then, by the induction hypothesis and by (v), e .

Case I.2: K is labeled with a minCardinality constraint of the form (1 P) or (1 P) and

the node M labeled with (1 P) or (1 P) is a -node with level n.

Assume that K is labeled with (1 P) and M is labeled with (1 P) (the other case is

identical). Then, by the induction hypothesis, (1 P) . But this implies that (1

P) . Since K is labeled with e and (1 P), by (vi), e (1 P). Hence, e .

(viii) Let K be a node of G(,) and e be an expression that labels K. Assume that K is a ⊤-

node. Then, K is a -node and e labels K , by (iii). Hence, by (vii), e . Therefore,

we have that ⊤ e.

(ix) Let K be a node of G(,). Assume that K is labeled with an atomic role P and that K

is a role -node. Then, the node L labeled with (1 P) is a -node. By (vii), (1 P) .

Hence, any model s of is such that s(P) = .

(x) Let K be a node G(,). Assume that K is a -node and K is not labeled with .

Note that the assumptions on K rule out Cases (i-a) of definition of -node. Therefore,
there are three cases to consider.

Case 1: K is labeled with a minCardinality constraint of the form (1 P) or (1 P), and the

node respectively labeled with (1 P) or (1 P) is not a -node.

Then, by (iv-d), K is labeled only with non-negative expressions, which must be atomic

concepts or minCardinality constraints of the form (m p), where p is either P or P and

m 1.

Case 2: There is a node M labeled with such that K→M.

Since K is a -node and there is a node M labeled with such that K→M, we have that e→

is a path in g(,). By construction of g(,), and since e→, there is a sequence of ex-

pressions h0, h1,…,hm such that h0 = e, hm = and (hi-1, hi) is an arc of G(,). But, if (a,b) is

an arc of G(,) such that a is a negated expression, then b is also a negated expression, as
already proved in (iv-d). Therefore, by induction, since e is a negated expression by as-
sumption, we may conclude that hm-1 is a negated expression. Then, since

(hm-1, hm), that is, (hm-1,) is an arc of g(,), either: (1) hm-1 is in ; or (2) ⊤ 1mh is in

. But, this is impossible, again because no constraint in has a negated expression on

45

the left-hand side, and ⊤ cannot occur on a constraint. Therefore, we may conclude that e

cannot be of the form D or (m p).

Case 3: There are nodes M and N and a non-negated expression h such that M and N are

respectively labeled with h and h, and K→M and K→N.

Since K→M, by construction of G(,), we have that e→h is a path in g(,). By construc-

tion of g(,), and since e→h, there is a sequence of expressions h0, h1,…,hm such that h0 =

e , hm = h and (hi-1, hi) is an arc of g(,). Again, if (a,b) is an arc of G(,) such that a is a
negated expression, then b is also a negated expression. Therefore, by induction, we may
conclude that hm, and hence h, is a negated expression, which contradicts the assumption

that h is non-negated. Hence, e cannot be of the form D or (m p).

Thus, we may conclude that, in both cases, e must a non-negated concept expression,

that is, e must be an atomic concept C or a minCardinality of the form (m p), where p is

either P or P
 and m 1.

(xi) Let L be a node of G(,). Assume that L is a ⊤-node and that L is not labeled with ⊤.

Then, by definition of ⊤-node, L is a -node. Furthermore, by (iii), L is not labeled with

, recalling that the complement of is ⊤, and vice-versa. Thus, by (x), L is labeled only

with non-negated atomic concepts or minCardinality constraints of the form (m p),

where p is either P or P and m 1. Therefore, by (iii), L is labeled only with negated
atomic concepts or negated minCardinality constraints of the form

(m p), where p is either P or P and m 1.

Definition 5: Let be a set of distinct Skolem function symbols for G(,) as follows:

(i) For any node N of G(,) labeled with (n P), associate n distinct unary Skolem
function symbols f1[N,P],…, fn[N,P]

(ii) For any node N of G(,) labeled with (n P), associate n distinct unary Skolem
function symbols g1[N,P],…, gn[N,P].

(iii) For any node N of G(,) labeled with an atomic concept or with (1 P), associate
a distinct Skolem constant c[N] (a constant is a 0-ary function symbol).

The Herbrand Universe [] for is the set of first-order terms constructed using the

function symbols in . The terms in [] are called individuals.

Again, to avoid repetitions, let be a set of distinct Skolem function symbols for

G(,) and [] be the Herbrand Universe for .

46

Definition 6:

(i) An instance labeling function for G(,) and [] is a function s’ that associates a set

of individuals in [] to each node of G(,) not labeled with an atomic role, and

a set of pairs of individuals in [] to each node of G(,) labeled with an atomic
role.

(ii) Let N be a node of G(,) labeled with an atomic concept or with (1 P). Assume

that N is not a -node. Then, the Skolem constant c[N] is a seed term of N, and N is
the seed node of c[N].

(iii) Let NP be the node of labeled with the atomic role P. Assume that NP is not a role

-node. For each term a, for each node M labeled with (m P), if as’(M) and there

is no node K labeled with (k P) such that m k and as’(K), then the pair (a,

fr[M,P](a)) is called a seed pair of NP triggered by as’(M). We also say that the term

fr[M,P](a) is a seed term of the node L labeled with (1 P), and L is called the seed

node of fr[M,P](a), for r[2,m], if a is of the form gi[J,P](b), for some node J and

some term b, and for r[1,m], otherwise.

(iv) Let NP be the node of labeled with the atomic role P. Assume that NP is not a role

-node. For each term b, for each node N labeled with (n P), if bs’(N) and there

is no node K labeled with (k P) such that n k and bs’(K), then the pair

(gr[N,P](b),b) is called a seed pair of NP triggered by bs’(N). We also say that the

term gr[N,P](b) is a seed term of the node L labeled with (1 P), and L is called the

seed node of gr[N,P](b), for r[2,n], if b is of the form fi[J,P](a), for some node J and

some term a, and for r[1,n], otherwise.

Definition 7: A canonical instance labeling function for G(,) and [] is an instance labe-

ling function that satisfies the following restrictions, for each node K of G(,):

(i) Assume that K is not labeled with an atomic role, and that K is neither a -node

nor a ⊤-node. Then, ts’(K) iff t is a seed term of a node J and there is a path from
J to K (nodes J and K may be equal, in which case the path is trivial).

(ii) Assume that K is labeled with an atomic role P, and that K is not a role -node.

Then, (t,u)s’(K) iff (t,u) is a seed pair of L triggered by as’(M), where M is a

node of G(,) labeled with (m P), or triggered by bs’(N), where N is a node of

G(,) labeled with (n P).

(iii) Assume that K is not labeled with an atomic role, and that K is a -node. Then,

s’(K)=.

(iv) Assume that K is not labeled with an atomic role, and that K is a ⊤-node. Then,

s’(K)=[].

47

(v) Assume that K is labeled with an atomic role P, and that K is a role -node. Then,

s’(K)=.

Proposition 6: Let s’ be canonical instance labeling function for G(,) and []. Then

(i) For any pair of nodes M and N of G(,) that are not labeled with an atomic role,

if M→N then s’(M) s’(N).

(ii) For any pair of nodes M and N of G(,) that are not labeled with an atomic role,

and that are not a -node, s’(M) s’(N) iff

a. either M or N is a ⊤-node, or

b. both M and N are not a ⊤-node, and there is a seed node K such that K→M
and K→N (nodes K and M, and K and N may be equal, in which case the
respective path is trivial).

(iii) For any node NP of G(,) labeled with an atomic role P, for any node M of

G(,) labeled with (m P), for any term ts’(M), either s’(NP) contains all seed

pairs triggered by ts’(M), or there are no seed pairs triggered by ts’(M).

(iv) For any node NP of G(,) labeled with an atomic role P, for any node N of G(,)

labeled with (n P), for any term ts’(N), either s’(NP) contains all seed pairs trig-

gered by ts’(N), or there are no seed pairs triggered by ts’(N).

Proof

(i) Let M and N be a pair of nodes of G(,). Assume that M and N are not labeled with

an atomic role. Suppose that M→N. There are 3 cases to consider.

Case 1: M is a -node.

Then, by Def. 7(iii), s’(M)=, which trivially implies s’(M) s’(N).

Case 2: N is a ⊤-node.

Then, by Def. 7(iv), s’(N)=[], which trivially implies s’(M) s’(N).

Case 2: M is a ⊤-node.

By definition of ⊤-node, M is a -node. By Prop. 5(ii), N M . Then, by definition of -

node, N is also a -node. Hence, N is also a ⊤-node. Hence, s’(M)=[]=s’(N).

Case 3: M is neither a -node nor a ⊤-node, and N is not a ⊤-node.

Since M is not a -node and M→N, by definition of -node, N is also not a -node. We

then have that M and N are not labeled with an atomic role and are not a -node or a ⊤-
node. Hence, the conditions of Def. 7(i) apply to both M and N.

48

Let ts’(M). By Def. 7(i), t is a seed term of a node J and J→M. Since M→N, we then have

J→N. Hence, by Def. 7(i), ts’(N). Hence, we may conclude that s’(M) s’(N).

(ii) Let M and N be a pair of nodes of G(,). Assume that M and N are not a -node.

Then, both s’(M) and s’(N) .

Case 1: Either M or N are a ⊤-node.

Then, either s’(M)=[] or s’(N)=[]. Hence, since both s’(M) and s’(N) , we tri-

vially have that s’(M) s’(N) .

Case 2: Neither M nor N are a ⊤-node.

By assumptions, M and N are not labeled with an atomic role and are neither a -node

nor a ⊤-node. Hence, the conditions of Def. 7(i) apply to both M and N. Then,

ts’(M)s’(N) iff t is a seed term of a node J and J→M and J→N.

(iii) This property follows directly from Def. 7(ii) and (v), by observing that there may not

be any seed pair triggered by ts’(M), where M is labeled with (m P) such that ts’(M), if

there is a node K labeled with (k P) such that ts’(K) and m<k.

(iv) Follows as for (iii).

Definition 8: Let s' be a canonical instance labeling function for G(,) and []. The in-

terpretation s for induced by s’ is defined as follows:

(i) [] is the domain of s.

(ii) s(C)=s’(M), for each atomic concept C, where M is the node of G(,) labeled with
C (there is just one such node).

(iii) s(P)=s’(N), for each atomic role P, where N is the node of G(,) labeled with P

(again, there is just one such node).

Lemma 1: Let s’ be a canonical instance labeling function for G(,) and []. Let s be the
interpretation induced by s’. Then, we have:

(i) For each node N of G(,), for each non-negated concept expression e that labels
N, s’(N)=s(e).

(ii) For each node N of G(,), for each negated concept expression e that labels N,

s’(N) s(e).

49

Proof

Let s’ be a canonical instance labeling function for G(,) and []. Let s be the interpre-
tation induced by s’.

(i) Let N be a node of G(,).

Let e be a non-negated concept expression that labels N. We have to prove that s’(N)= s(e).

Case 1: N is not a -node or a ⊤-node.

By the restrictions on constraints and constraint expressions – and this is important –
there are 3 cases to consider:

Case 1.1: e is an atomic concept C.

By Def. 8(ii), s’(N)= s(C).

Case 1.2: e is of the form (n P).

Let NP be the node labeled with P. Then, NP is not a role -node. Indeed, assume other-

wise. Then, the node L labeled with (1 P) would be a -node, by definition of role -

node. But, by construction of G(,), there would be an arc from N (the node labeled with

(n P)) to L. Hence, N would be a -node, contradicting the assumption of Case 1.

Then, since NP is not a role -node, Def. 7(ii) applies to s’(NP).

Recall that N is the node labeled with (n P) and that N is not a -node or a ⊤-node.
We first prove that

(1) as’(N) implies that as((n P))

Let as’(N). Let K be the node labeled with (k P) such that as’(K) and k is the largest

possible. Since as’(K) and k is the largest possible, there are k pairs in s’(NP) whose first
element is a, by Prop. 6(iii). By Def. 8(iii), s(P)=s’(NP). Hence, by definition of minCardi-

nality, as((k P)). But again by definition of minCardinality, s((k P)) s((n P)), since n

 k, by the choice of k. Therefore, as((n P)).

 We now prove that

(2) as((n P)) implies that as’(N)

Let as((n P)). By definition of minCardinality, there must be n distinct pairs
(a,b1),…,(a,bn) in s(P) and, consequently, in s’(NP), since s(P)=s’(NP), by Def. 8(iii).

Recall that NP is not a role -node. Then, by Def. 7(ii) and Def. 6(iii), possibly by reor-
dering b1,…,bn, we then have that there are nodes L0,L1,…Lv such that

(3) (a,b1) is a seed pair of NP of the form (gi0[L0,P](u),u), triggered by us’(L0), where L0 is

labeled with (l0 P
), for some i0[1,l0]

or

50

(4) (a,b1) is a seed pair of NP of the form (a, f1[L1,P](a)), triggered by as’(L1), where L1 is

labeled with (l1 P) and

(5) (a,bj) is a seed pair of NP of the form (a, fwj[Li ,P](a)), triggered by as’(Li), where Li is

labeled with (li P),],1)[(

1

1 1

i

r

i

r

rr llj , with wj[1,li] and i[2,v]

Furthermore, li lj, for i,j[2,v], with i j, since only one node is labeled with (li P).
We may therefore assume without loss of generality that l1 > l2 >…> lv. But note that we

then have that as’(Li) and as’(Lj) and li > lj, for each i,j[1,v], with i<j. But this contra-

dicts the fact that (a, fwj[Lj,P](a)) is a seed pair of NP triggered by as’(Lj) since, by Def.

6(iii), there could be no node Li labeled with (li P) with li > lj and as’(Li). This means that
in fact there is just one node, L1, that satisfies (5).

We are now ready to show that as’(N).

Case 1.2.1: n=1.

Case 1.2.1.1: a is of the form gi0[L0,P](u).

Recall that NP is not a role -node. Then, by Def. 6(iv), gi0[L0,P](u) is a seed term of the

node labeled with (1 P), which must be N, since n=1 and there is just one node labeled

with (1 P). Therefore, since N is not a -node or a ⊤-node, by Def. 7(i), as’(N).

Case 1.2.1.2: a is not of the form gi0[L0,P](u).

Then, by (4) and assumptions of the case, as’(L1). Since, L1 is labeled with (l1 P) and N

with (1 P), either n=l1=1 and N=L1, or l1>n =1 and (L1,N) is an arc of G(,), by definition

of G(,). Then, s’(L1)s’(N), using Prop. 6(i), for the second alternative. Therefore,

as’(N) as desired, since as’(L1).

Case 1.2.2: n>1.

We first show that n l1. First observe that, by (5) and n>1, s’(NP) contains a seed pair (a,

fwj[L1,P](a)) triggered by as’(L1). Then, by Prop. 6(iii), s’(NP) contains all seed pairs trig-

gered by as’(L1). In other words, we have that as((n P)) and (a,b1),…,(a,bn)s’(NP) and

(a,b1),…,(a,bn) are triggered by as’(L1). Therefore, either (a,b1),…,(a,bn) are all pairs trig-

gered by as’(L1), in which case n=l1, or (a,b1),…,(a,bn), (a,bn+1),…,(a,
1l

b), in which case n<l1.

Hence, we have that n l1.

Since L1 is labeled with (l1 P) and N with (n P), with n l1, either n=l1 and N=L1, or

l1>n and (L1,N) is an arc of G(,), by definition of G(,). Then, s’(L1)s’(N), using Prop.

6(i), for the second alternative. Therefore, as’(N) as desired, since as’(L1).

Therefore, we established that (2) holds. Hence, from (1) and (2), s’(N)=s((n P)), as de-
sired.

Case 1.3: e is of the form (n P).

The proof of this case is entirely similar to that of Case 1.2.

51

Case 2: N is a -node.

By Def. 7(iii), we then have s’(N)=. Let e be a non-negated concept expression that labels

N. We show that s’(N)=s(e)=.

We begin by observing that, by Prop. 5(x), either N is labeled with , or N is labeled

only with non-negated atomic concepts or minCardinality constraints of the form (n p),

where p is either P or P and 1≤ n.

Then, there are two cases to consider.

Case 2.1: e is a non-negated atomic concept C.

Then, we trivially have, by Def. 8 (ii), that s(C)=.

Case 2.2: e is a minCardinality constraint of the form (n p), where p is either P or P and
1≤ n.

We prove that s((n p))=, using an argument similar to that in Case 1.2.

Let NP be the node labeled with P.

Case 2.2.1: NP is a role -node

Then, by Def. 7(v) and Def. 8(iii), s(P)=s’(NP)=. Hence, s((n p))=.

Case 2.2.2: NP is not a role -node.

Then, Def. 7(ii) applies to s’(NP).

Assume that s((n p)) and let as((n p)). By definition of minCardinality and since
s(P)=s’(NP), there must be n distinct pairs (a,b1),…,(a,bn) in s’(NP). Using an argument simi-
lar to that in Case 1.2, there are nodes L0 and L1 such that

(6) (a,b1) is a seed pair of NP of the form (gi0[L0,P](u),u), triggered by us’(L0), where L0 is

labeled with (l0 P
), for some i0[1,l0]

or

(7) (a,b1) is a seed pair of NP of the form (a, f1[L1,P](a)), triggered by as’(L1), where L1 is

labeled with (l1 P)

and

(8) (a,bj) is a seed pair of NP of the form (a, fwj[L1 ,P](a)), triggered by as’(L1), where L1 is

labeled with (l1 P), with j[2,l1]

We are now ready to show that no such as((n p)) exists. Recall that n>1. We first

show that n l1. First observe that, by (8) and n>1, s’(NP) contains a seed pair (a,

fwj[L1,P](a)) triggered by as’(L1). Then, by Prop. 6(iii), s’(NP) contains all seed pairs trig-

gered by as’(L1). In other words, we have that as((n P)) and (a,b1),…,(a,bn)s’(NP) and

(a,b1),…,(a,bn) are triggered by as’(L1). Therefore, either (a,b1),…,(a,bn) are all pairs trig-

gered by as’(L1), in which case n=l1, or (a,b1),…,(a,bn), (a,bn+1),…,(a,
1l

b), in which case n<l1.

52

Hence, we have that n l1. Since L1 is labeled with (l1 P) and N with (n P), with n l1,

either n=l1 and N=L1, or l1>n and (L1,N) is an arc of G(,), by definition of G(,). Then,

s’(L1)s’(N), using Prop. 6(i), for the second alternative. Therefore, as’(N), since as’(L1).

But this is impossible, since s’(N)=.

Hence, we conclude that s((n p))=.

Therefore, we have that, if N is a -node, then s’(N)=s(e)=, for any non-negated con-
cept expression e that labels N.

Case 3: N is a ⊤-node.

By Def. 7(iv), we then have s’(N)=[]. Let e be a non-negated expression that labels N.

We show that s’(N)=s(e)=[].

By Prop 5(xi), N is either labeled only with ⊤, or labeled only with negated expres-

sions. Therefore, e can only be the top concept ⊤. Therefore, trivially, s(e)=[].

Therefore, we established in all three cases that Lemma 1(i) holds.

(ii) Let N be a node of G(,).

Let e be a negated expression that labels N. We have to prove that s’(N) s(e).

Case 1: N is not a -node or a ⊤-node.

Suppose, by contradiction, that there is a term t such that ts’(N) and ts(e).

Since ts(e), we have that ts(e), by definition. Let M be the node labeled with e.

Hence, by Lemma 1(i), ts’(M). That is, t s’(M) s’(N).

Note that M and N are in fact dual nodes. Therefore, since N is not a -node or a ⊤-

node, M is also not a ⊤-node or a -node, by definition of ⊤-node. Hence, by Prop. 6(ii)

and Def. 7(i), since both M and N are not a -node or a ⊤-node, there is a seed node K

such that K→M and K→N and ts’(K). But this is impossible. Indeed, we would have that

K→M and K→N, M is labeled with e, and N is labeled with e, which implies that K is a

-node. Hence, by Def. 7(iii), s’(K)=, which implies that ts’(K).

Therefore, we established that, for all terms t, if ts’(N) then ts(e). That is,

s’(N) s(e), as desired.

Case 2: N is a -node.

By Def. 7(iii), we then have s’(N)=, which trivially implies that s’(N) s(e).

Case 3: N is a ⊤-node.

By Def. 7(iv), we then have s’(N)=[]. We show that s(e)=[]. Let N be the dual node

of N. Since N is a ⊤-node, we have that N is a -node. Furthermore, since e labels N, e

53

labels N . Since e is a positive expression, by Lemma 1(i), s’(N)=s(e)=. Thus, s(e)=[],

which trivially implies that s’(N) s(e).

Therefore, we established that, in all three cases, Lemma 1(ii) holds.

Lemma 2: Let s be the interpretation for induced by a canonical instance labeling func-

tion for G(,) and []. Then, we have

(i) s is a model of .

(ii) Let N be a node of G(,). Let e be an atomic concept or a minCardinality of the form

(1 P) that labels N. Assume that N is not a -node. Then s(e).

(iii) Let N be a node of G(,). Let P be an atomic role that labels N. Assume that N is not

a role -node. Then, s(P).

Proof

Let be a set of normalized constraints and be a set of constraint expressions. Let

G(,) be the graph that represents and . Let be a set of distinct function symbols

and [] be the Herbrand Universe for . Let s’ be a canonical instance labeling function

for G(,) and [] and s be the interpretation for induced by s’.

(i) We prove that s satisfies all constraints in .

Let e f be a constraint in . By the restrictions on the constraints in , e must be non-
negated and f can be negated or not. Therefore, there are two cases to consider.

Case 1: e and f are both non-negated.

Then, by Lemma 1(i), s’(M)=s(e) and s’(N)=s(f), where M and N are the nodes labeled with

e and f, respectively. If M=N, then we trivially have that s’(M)=s’(N). So assume that MN.

Since e f is in and MN, there must be an arc (M,N) of G(,). By Prop. 6(i), we then

have s’(M) s’(N). Hence, s(e) = s’(M) s’(N) = s(f).

Case 2: e is non-negated and f is negated.

Then, by Lemma 1(i), s’(M)=s(e) and, by Lemma 1(ii), s’(N) s(f), where M and N are the
nodes labeled with e and f, respectively. Since negated expressions do not occur on the

left-hand side of constraints in , e and f cannot label nodes that belong to the same clique

in the original graph. Therefore, we have that MN. Since e f is in and MN, there

must be an arc (M,N) of G(,). By Prop. 6(i), we then have s’(M) s’(N). Hence,

s(e) = s’(M) s’(N) s(f).

Thus, in both cases, s(e) s(f). Therefore, for any constraint e f in , we have that

s e f, which implies that s is a model of .

54

(ii) Let N be a node of G(,). Let e be an atomic concept or a minCardinality of the form

(1 P) that labels N. Assume that N is not a -node. Then, by Lemma 1(i), s(e)=s’(N).

Case 1: N is a ⊤-node.

Then, we trivially have that s(e)=s’(N)=[].

Case 2: N is not a ⊤-node.

Then, N is neither a -node nor a ⊤-node. By Def. 6(ii) and Def. 7(i), the seed term c[N] of

N is such that c[N]s(e). Hence, trivially, s(e).

(iii) Let N be a node of G(,) and P be an atomic role that labels N. Assume that N is not

a role -node. Then, the node labeled with (1 P) is not a -node. Then, by (ii),

s((1 P)). Hence, s(P).

We are now ready to prove the second major result of the paper.

Theorem 2: Let be a set of normalized constraints. Let e f be a constraint and = {e,f}.

Let G(,) be the graph that represents and . Then, e f iff one of the following
conditions holds:

(a) The node labeled with e is a -node; or

(b) The node labeled with f is a ⊤-node; or

(c) There is a path in G(,) from the node labeled with e to the node labeled with f .

Proof

Let be a set of normalized constraints. Let e f be a constraint and = {e,f}. Let G(,)

be the graph that represents and . Observe that, by construction, G(,) has a node
labeled with e and a node labeled with f. Let M and N be such nodes, respectively.

() We show that e f . There are three cases to consider:

Case 1: M is a -node.

Then, by Prop. 5 (vii), e , which trivially implies that e f.

Case 2: N is a ⊤-node.

Then, by Prop. 5 (viii), ⊤ f, which trivially implies that e f.

Case 3: There is a path in G(,) from M to N.

Then, by Prop. 5(v) and (vi), we have that e f.

55

() We prove that, if the conditions of the theorem do not hold, then ⊭ e f.

Since e f is a constraint, we have:

(1) e is either an atomic concept C or minCardinalities of the form of the form (k p),

where p is either P or P, and

(2) f is either the bottom concept , an atomic concept C, a negated atomic concept D,

minCardinality constraints of the form (k p), or negated minCardinality constraints

of the form (k p), where p is either P or P

Assume that the conditions of the theorem do not hold, that is:

(3) The node M labeled with e is not a -node; and

(4) The node N labeled with f is not a ⊤-node; and

(5) There is no path in G(,) from M to N .

To prove that ⊭ e f, it suffices to exhibit a model r of such that r ⊭ e f. Recall

that r ⊭e f iff there is an individual t such that tr(e) and tr(f) or, equivalently, tr(f).

Recall that, to simplify the notation, e→f denotes that there is a path in G(,) from the

node labeled with e to the node labeled with f, and e↛f to indicate that no such path ex-
ists.

Since e f is a constraint, e must be non-negated and f can be negated or not. Hence,
there are 2 cases to consider.

Case 1: e and f are both non-negated.

Let s’ be a canonical instance labeling function for G(,) and s be the model induced by

s’. By Lemma 2, s is a model of . We show that s ⊭ e f.

Case 1.1: N is a -node.

Since N is a -node, by Prop. 5(vii), we have that f , which implies that s(f)=,

since s is a model of .

By (1), e is either an atomic concept C or minCardinalities of the form (k p), where p is

either P or P. By (3), M is not a -node. Hence, by Def. 7(i), if M is not a ⊤-node, or by

Def. 7(iv), if M is a ⊤-node, and by Def. 8(ii), s(e). Hence, we trivially have that s ⊭ e
f.

Case 1.2: N is not a -node.

Observe that M and N are neither a -node nor a ⊤-node. Indeed, by assumption of the

case and by (4), N is neither a -node nor a ⊤-node. Now, by (3), M is not a -node. Fur-
thermore, since e f is a constraint, either M and N are the same node or there is an arc

(M,N) in G(,). Therefore, M cannot be a ⊤-node as otherwise N would be a ⊤-node,
contradicting (4).

56

By Lemma 1(i), since e is non-negated by assumption, and Def. 6(ii) and Def. 7(i), since

M is neither a -node nor a ⊤-node, we have

(6) s’(M)=s(e) and there is a seed term c[M]s’(M)

By definition of canonical instance labeling function, we have:

(7) For each node K of G(,) that is neither a -node nor a ⊤-node or labeled with an

atomic role, c[M]s’(K) iff there is a path from M to K

By (5), we have e↛f. Furthermore, N is neither a -node nor a ⊤-node. Hence, by (7),
we have:

(8) c[M]s’(N)

Since f is positive, by Lemma 1(i), s’(N)=s(f). Hence, we have

(9) c[M]s(f)

Therefore, by (6) and (9), s(e)⊈s(f), that is, s ⊭e f, as desired.

Case 2: e is non-negated and f is negated.

Assume that f is a negated expression of the form g, where g is non-negated (if f is

then g is ⊤).

Case 2.1: e→g.

Let s’ be a canonical instance labeling function for G(,) and s be the model induced by

s’. By Lemma 2, s is a model of . We show that s ⊭ e f.

By Prop. 5(v) and (vi), and since s is a model of , we have that s e g, if e and g label

the same node, and s e g, otherwise. Hence, we have that s ⊭ e g. Now, since f is

g, we have s ⊭e f, as desired.

Case 2.2: e↛g.

Construct as follows:

(10) is with two new constraints, H e and H g, where H is a new atomic con-
cept

Let r’ be a canonical instance labeling function for G(,) and r be the model induced

by r’. By Lemma 2, r is a model of . We show that r ⊭ e f.

We first observe that

(11) There is no expression h such that e→h and g→h are paths in G(,)

Indeed, by construction of G(,), g→h iff h→g. But e→h and h→g implies e→g,

contradicting (5), since f is g. Hence, (11) follows.

57

We now prove that

(12) There is no non-negated expression h such that H→h and H→h are paths in

G(,)

Assume otherwise. Let h be a non-negated expression such that H→h and H→h are

paths in G(,).

Case 2.2.1: H→e→h and H→g→h are paths in G(,).

Then, e→h and g→h must be paths in G(,), which contradicts (11).

Case 2.2.2: H→e→h and H→g→h are paths in G(,).

Then, e→h and g→h must be paths in G(,). But, since g→h iff h→g, we have

e→h→g is a path in G(,), which contradicts (5), recalling that f is g.

Case 2.2.3: H→e→h and H→e→h are paths in G(,).

Then, e→h and e→h must be paths in G(,), which contradicts (3), by definition of -
node.

Case 2.2.4: H→g→h and H→g→h are paths in G(,).

Then, g→h and g→h must be paths in G(,). Now, observe that, since g is f, that is, f

and g are complementary expressions, g labels N , the dual node of N in G(,). Then,

g→h and g→h implies that N is a -node of G(,), that is, N is a ⊤-node, which contra-
dicts (4).

Hence, we established (12).

Let K be the node of G(,) labeled with H. Note that, by construction of , K is la-

beled only with H. Then, by (12), K is not a -node.

By Lemma 2(i), r is a model of . Furthermore, by Lemma 2(ii) and since K is not a -
node, we have

(13) r(H)

Since H e and H g are in , and since r is a model of , we also have:

(14) r(H) r(e) and r(H) r(g)

Therefore, by (13) and (14) and since f = g

(15) r(e) r(g) or, equivalently, r(e) ⊈ r(g) or, equivalently, r(e) ⊈ r(f) or, equiva-

lently, r ⊭e f

58

But since , r is also a model of . Therefore, for Case 2.2, we also exhibited a

model r of such that r ⊭e f, as desired.

Therefore, in all cases, we exhibited a model of that does not satisfy e f.

Corollary 1: Let be a set of normalized constraints. Let e f be a constraint and = {e,f}.

Let G(,) be the graph that represents and , and G() be the graph that represents

. Suppose that e f. Then:

(a) Either e labels a node of G() or e is of the form (k P) and there is a node of G()

labeled with (j P), where j<k.

(b) Either f labels a node of G() or f is of the form (n P) and there is a node of G()

labeled with (m P), where m<n.

Proof

Let be a set of normalized constraints. Let e f be a constraint and = {e,f}. Let G(,)

be the graph that represents and , and G() be the graph that represents . Suppose

that e f.

Then, by Theorem 2, one of the conditions must hold

(1) The node labeled with e is a -node; or

(2) The node labeled with f is a ⊤-node; or

(3) There is a path in G(,) from the node labeled with e to the node labeled with f .

Since e f is a constraint, e must be an atomic concept of an expression of the form (k

P). Let M be the node of G(,) labeled with e, which always exists by construction of

G(,). Assume that e does not label a node of G(). Then, by construction of G(,), if M

is a -node of G(,) or there is a path in G(,) starting on M, then there must be an arc

(M,K) of G(,), but not of G(), since e does not label any node of G()). But this is possi-

ble only if e is a minCardinality of the form (k P) and there is a node of G() labeled with

(j P), where j<k.

Likewise, let N be the node of G(,) labeled with f, which always exists by construc-

tion of G(,). Assume that f does not label a node of G().Then, by construction of

G(,), if N is a ⊤-node of G(,) or there is a path in G(,) ending on N, then there

must be an arc (L,N) of G(,), but not of G(), since f does not label any node of G()).
But this is possible only if f is a negated minCardinality of the form

(n P) and there is a node of G() labeled with (m P), where m<n.

Let 1 and 2 be two sets of normalized constraints. Let G(1) and G(2) be the graph

that represent 1 and 2. Denote their transitive closure by G*(1) and G*(2).

59

Definition 9: The set of constraints that generates the g.l.b. of 1 and 2 is defined as fol-

lows. A constraint e f is in iff there are i, j{1,2}, with ij, such that one of the follow-
ing conditions holds

(a) There is a -node M of G(i) and a -node P of G(j) and

 e is a non-negated constraint expression that labels both M and P

 f is the bottom concept

(b) There is a -node M of G(i) and an arc (P,Q) of G*(i) such that P is not a -node

of G(j) and

 e is a non-negated constraint expression that labels both M and P

 f is a constraint expression that labels Q

(c) There is a ⊤-node N of G(i) and an arc (P,Q) of G*(i) such that Q is not a ⊤-node

of G(j) and

 e is a non-negated constraint expression that labels P

 f is a constraint expression that labels both N and Q

(d) There is a an arc (M,N) of G*(i) and an arc (P,Q) of G*(i) such that M, N, P or Q is

not a -node or a ⊤-node and

 e is a non-negated constraint expression that labels both M and P

 f is a constraint expression that labels both N and Q .

Note that is indeed a (normalized) set of constraints, in the sense of Sections 3.2 and
4.2. Indeed, by construction, e is always a non-negated constraint expression and f is a
constraint expression.

Corollary 2 follows from Theorem 2, Corollary 1 and the definition of , and indicates

that is indeed correctly constructed.

Corollary 2: Let 1 and 2 be two sets of normalized constraints. Let be the set of cons-

traints that generates the g.l.b. of 1 and 2. Let G() be the graph that represents . Then,
we have

(i) Th() = 1 2.

(ii) Let e f be a constraint and = {e,f}. Let G(,) be the graph that represents and

. Then, e f is in 1 2 iff one of the conditions holds:

(a) The node of G(,) labeled with e is a -node; or

(b) The node of G(,) labeled with f is a ⊤-node; or

(c) There is a path in G(,) from the node labeled with e to the node labeled with f.

60

Proof

Let 1 and 2 be two sets of normalized constraints. Let be the set of constraints that

generates the g.l.b. of 1 and 2.

(i) We first prove that 1 2 Th().

Let e f be a constraint. Assume that e f is in 1 2. Then, e f is in Th(1) Th(2),

that is, i e f, for i=1,2. Then, by Theorem 2, one of the conditions expressed in (10),

(11) and (12) must hold for G(i ,), for i=1,2:

(1) The node of G(i ,) labeled with e is a -node; or

(2) The node of G(i ,) labeled with f is a ⊤-node; or

(3) There is a path in G(i ,) from the node labeled with e to the node labeled with f.

Furthermore, by Corollary 1, we have

(4) Either e labels a node of G(i) or e is of the form (k P) and there is a node of G(i) la-

beled with (j P), where j<k.

(5) Either f labels a node of G(i) or f is of the form (n P) and there is a node of G(i)

labeled with (m P), where m<n.

There are 9 cases to consider by combining (1) to (3) for G(1,) with (1) to (3) for G(2 ,).
Using (4) and (5), they map to the four cases of Definition 9 as follows:

Case 1: (1) holds for G(1 ,) and for G(2 ,). This case maps to Def. 9 (a).

Case 2: (1) holds for G(1 ,) and (2) for G(2 ,). This case maps to Def. 9 (b).

Case 3: (1) holds for G(1 ,) and (3) for G(2 ,). This case maps to Def. 9 (b).

Case 4: (2) holds for G(1 ,) and (1) for G(2 ,). This case maps to Def. 9 (b).

Case 5: (2) holds for G(1 ,) and (2) for G(2 ,). This case maps to Def. 9 (a), using Prop.
5(ii) and (iii).

Case 6: (2) holds for G(1 ,) and (3) for G(2 ,). This case maps to Def. 9 (c).

Case 7: (3) holds for G(1 ,) and (1) for G(2 ,). This case maps to Def. 9 (b).

Case 8: (3) holds for G(1 ,) and (2) for G(2 ,). This case maps to Def. 9 (c).

Case 9: (3) holds for G(1 ,) and (3) for G(2 ,). This case maps to Def. 9 (d).

In all 9 cases, we have that e f is in Th(), as desired.

61

We now prove that Th() 1 2.

Let e f be a constraint. Assume that e f is in Th(), that is, e f. Then, by Theo-

rem 2, one of the conditions expressed in (6), (7) and (8) must hold for G(,):

(6) The node of G(,) labeled with e is a -node; or

(7) The node of G(,) labeled with f is a ⊤-node; or

(8) There is a path in G(,) from the node labeled with e to the node labeled with f.

By Definition 9 and Theorem 2, we have that e f is in Th(1) Th(2) = 1 2, as de-
sired.

(ii) Let e f be a constraint and = {e,f}. By (i), e f is in 1 2 iff e f is in Th(). But,

by Theorem 2, e f is in Th() iff one of the conditions (a), (b) or (c) holds.

