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Abstract

RelHunteris a Machine Learning based
method for the extraction of structured in-
formation from text. Here, we appRel-
Hunter to the Hedge Detection task, pro-
posed as the CoNLL 2010 Shared Task
RelHuntets key design idea is to model
the target structures as a relation over enti-
ties. The method decomposes the original
task into three subtasks: (i) Entity Iden-
tification; (ii) Candidate Relation Gener-
ation; and (iii) Relation Recognition. In
the Hedge Detection task, we define three
types of entities:cue chunk start scope
tokenand end scope token Hence, the
Entity Identification subtask is further de-
composed into three token classification
subtasks, one for each entity type. In
the Candidate Relation Generation sub-
task, we apply a simple procedure to gen-
erate dernarycandidate relation. Eachin-
stance in this relation represents a hedge
candidate composed by a cue chunk, a
start scope token and an end scope to-
ken. For the Relation Recognition sub-
task, we use a binary classifier to discrim-
inate between true and false candidates.
The four classifiers are trained with the
Entropy Guided Transformation Learning
algorithm. When compared to the other
hedge detection systems of the CoNLL
shared task, our scheme shows a competi-
tive performance. Thé'-score of our sys-
tem is54.05 on the evaluation corpus.

1 Introduction

Hedgesare linguistic devices that indicate un-
certain or unreliable information within a text.
The detection of hedge structures is important for
many applications that extract facts from textual
data. The CoNLL 2010 Shared Task (Farkas et al.,
2010) is dedicated to hedge detection.

A hedge structure consists otaeand ascope
In Figure 1, we present a sentence with two hedge
instances. The hedge cues are highlighted and
their scopes are delimited by brackets. The hedge
cue comprises one or more keywords that indi-
cate uncertainty. The hedge scope is the uncertain
statement which is hedged by the cue. The scope
always includes the corresponding cue.

=)

[ They indicate that [ the demonstratio
is possiblein this context ] and there is|a
correlation ]

Figure 1: Sentence with two hedge instances.

Over the last two decades, several Computa-
tional Linguistic problems have been successfully
modeled as local token classification tasks (Brill,
1995; Milidit et al., 2009). Nevertheless, the
harder problems consist in identifying complex
structures within a text. These structures comprise
many tokens and show non local token dependen-
cies.

Phrase chunking (Sang and Buchholz, 2000) is
a task that involves structure recognition. Pun-
yakanok and Roth decompose this task into
four subtasks, that are sequentially solved (Pun-
yakanok and Roth, 2001). They use Hidden
Markov Models for the first three subtasks. They
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Closed Task 2detection of hedge cues and their scopes.As clauses may embed other clauses, these struc-



tures involve stronger dependencies than phragasks: (i)Entity Identification (ii) Candidate Re-
chunks. Carrerast al. propose an approach that lation Generationand (iii) Relation Recognition
extends Punyakanok and Roth’s previous workn Figure 2, we illustrate the application &¥el-
(Carreras et al., 2002). Their system comprisesiunter to hedge detection. We use the sentence
complex methods for training and extraction, inintroduced by Figure 1.
order to exploit the specific dependency aspects of Entity Identification is a local subtask, in which
clause structures. simple entities are detected without any concern
Phrase Recognition is a general type of task thaabout the structures they belong to. The outcome
includes both phrase chunking and clause idenef this subtask is thentity set For instance, for
tification. Carrera®t al. propose the Filtering- hedge detection, we identify three types of enti-
Ranking Perceptron (FRP) system for this generdies: hedge cues, tokens that start a scope and to-
task (Carreras et al., 2005). The FRP task modekens that end a scope.
ing is strongly related to previous proposals (Pun- The second subtask is performed by a simple
yakanok and Roth, 2001; Carreras et al., 2002)procedure that generates tbandidate relation
However, it simultaneously learns to solve threeover the entity set. This relation includes true and
subtasks. FRP is very effective, although compufalse candidates This procedure considers do-
tationally expensive at both training and predictionmain specific knowledge to avoid the generation
time. Currently, FRP provides the best performingof all possible candidates. In the hedge detection
clause identification system. task, we define the candidate relation as the set
In (Morante and Daelemans, 2009), the hedgef entity triples that comprise a hedge cue, a start
detection task is solved as two consecutive classscope token and an end scope token, such that the
fication tasks. The first one consists of classify-start token does not occur after the end token and
ing the tokens of a sentence as hedge cues usirige hedge cue occurs between the start and the end
the IOB tagging style. The second task consists ofokens.
classifying tokens of a sentence as being the start The Relation Recognition subtask is a binary
of a hedge scope, the end of one, or neither. Thelassification problem. In this subtask, we dis-
result of those two tasks is combined using a set ofriminate between true and false candidates. The
six rules to solve the hedge detection task. output relationproduced in this subtask contains
Here, we describ&kelHunter a new method the identified hedge instances.
for the extraction of structured information from
text. Additionally, we apply it to the Hedge Detec- 3 Hedge Detection using RelHunter

tion task. RelHunterextends the modeling strat- In this section, we detail th&elHuntermethod

egy used both in (Carreras et al., 2005) and (Pun- o L .
yakanok and Roth, 2001). Other applications Ofand describe its application to hedge detection.

this method are presented in (Fernandes et alg ¢ Entity Identification

2009b; Fernandes et al., 2010). ) . )
We consider three specific entity types: cue chunk,

The remainder of this text is organized as fol- tart tok dend token. We divid
lows. In Section 2, we present an overview of the> aft SCOPE token, and end Scope token. YVe divide

RelHuntermethod. The modeling approach for entity identification into three token classification
the Hedge Detection task is presented in Section&SKS: One for each entity type. Thus, we use the

3 and 4. The experimental findings are depictec(l)rlglnal corpus to train thrge classifiers.
and discussed in Section 5. Finally, in Section 6 The cue chunksubtask is approached as a to-
we present our final remarks, ken classification problem by using the 10B tag-

ging style. The token tag is defined as follows: I,
2  RelHunter Overview when itis inside a hedge cue; O, when it is outside

a hedge cue; and B, when it begins a hedge cue
The central idea oRelHunteris to model the tar- immediately after a distinct cue. As the baseline
get structures as a relation over entities. To learelassifier, we use the Cue Dictionary proposed in
how to extract this relation from texRelHunter (Morante and Daelemans, 2009), classifying each
uses two additional schemes: task decompositionccurrence of those words as a cue.
and interdependent classification. The start scopeand end scopesubtasks are

We decompose the original task into three submodeled as binary token classification problems.



‘They indicate that the demonstration Entity Set:
is possible in this context and {'They', 'indicate that', 'the’,
there is a correlation' Entity '‘possible’, 'context’, 'correlation'} Candidate Relation
Identification Generation

Candidate Relation:
{('indicate that', 'They', 'context'),
('indicate that', 'They', 'correlation'),
('possible’, 'They', 'context'),
(‘possible', 'They', 'correlation'),
(‘possible’, 'the', 'context'),
('‘possible’, 'the', 'correlation')}

Output Relation:
{('indicate that', 'They', 'correlation'),
('possible’, 'the', 'context')}

Relation
< €

Recognition

Figure 2: Diagram of th&elHuntermethod.

As the baseline classifier for the start scope sub- The global features follow Carreras al. (Car-
task, we assign the first token of each hedge cue aeras et al., 2002). These features are generated by
the start of a scope. considering the whole sentence where the candi-
We have two baseline classifiers for the enddate lies in. They inform about the occurrence of
scope subtaskEND and END-X The END sys- relevant elementwithin sentencdragments We
tem classifies as an end token the second to theonsider as relevant elements the three entity types
last token of each sentence that contains a cuend verbal chunks.
Due to the frequent occurrence of parenthesized For each candidate entity, we consider three
clauses at the end of sentences in full articles, thtagments. The first one contains all the tokens be-
END-X system extends thEND system with an fore the entity. The second, all the entity tokens,
additional operation. It reassigns an end scope tagnd the third all the tokens after the entity. Simi-
from a close parentheses token, to the token befotarly, for the whole candidate, we have three more

its corresponding open parentheses. fragments: one containing all the tokens before the
. . _ candidate, another containing all the candidate to-
3.2 Candidate Relation Generation kens, and the third one containing all the tokens

We define as the candidate hedge relation the sefter the candidate. Thus, there are 12 fragments
of entity triples that comprise a hedge cue, a starfor each candidate, three for each entity plus three
scope token and an end scope token, such that tiier the whole candidate.

start token does not occur after the end token and For each relevant element and fragment, we
the hedge cue occurs between the start and the egénerate two global features in the relation dataset:

tokens. a flag indicating the occurrence of the element
_ N within the fragment and a counter showing its fre-
3.3 Relation Recognition quency.

We train a binary classifier to discriminate be- The relation dataset hdsn local features and
tween positive and negative candidates within thé&r(k + 1) global features, wherk is the relation
candidate relation. This classifier is trained on thecardinality (number of entities)y is the number
relation datasetwhich is built by a general pro- of features in the original corpus, ans the num-
cedure. This dataset contains an entry for eacher of relevant elements.
candidate. For each candidate, we generate two Our currentRelHunterimplementation uses the
feature setslocal featuresandglobal features Entropy Guided Transformation Learning (ETL)
The local features include local information as its learning engine (Milidi et al., 2008; dos
about each candidate entity, namely: cue chunkSantos and Milidi, 2009). For instance, we train
start scope token and end scope token. These fefpur ETL based classifiers: one for each Entity
tures are retrieved from the original corpus. Forldentification subtask and one for the Relation
the start and end tokens, we use all their features iRecognition subtask. In the next section, we de-
the original corpus. For the cue chunk, we use thacribe an important issue explored by the ETL al-
features of the rightmost token within the chunk. gorithm.



4 Interdependent Classification stems have been generated by the Porter stemmer

The input to the Relation Recognition subtask iS(Porter, 1980). The additional annotation has been
the candidate relation, i.e., a set of hedge Candigenerated by ETL based systems (dos Santos and

L e "~ Milidi G, 2009; Fernandes et al., 2009b; Milidat
dates. The corresponding classifier must dISCI’IméI 2008)
inate positive from negative candidates. However, . '

. . . o " The CoNLL corpus is based on ti&oScope
identifying one candidate as positive implies that . . .

. . .. corpus (Vincze et al., 2008). Since it contains doc-
some other candidates must be negatives. This in-

. AN uments of two different kinds — paper abstracts and
volves a special modeling issuénterdependent

e . . full papers — we split it into two subcorpora. The
classification The learning engine may explore . . .
. o ... first subcorpus is calledBSTand contains all the
these dependencies, when building the classifier .
. paper abstracts. The second is calfddlLL and
for this subtask.

e 8ontains all the full papers.
Interdependent classification is usually assume We have two experimental setufdevelopment
for neighboring examples. When the learning P P

model adopts a Markovian Property, then theandEvaluatlon In the Development Setup, we use

neighborhood is given by a context window. ThisABSTas the training corpus arfeLL as the de-

is the case for Markovian Fields such as Hiddenvglopment corpus. This is a conservative decision

Markov Models. Another model that also exploresSlnce the CON.LL Evaluation Corpqs 's comprised
. : only of full articles. In the Evaluation Setup, we
interdependent examples is ETL.

. . : use the union ofABSTand FULL as the train-

ETL is a very attractive modeling tool and has.
. e .ing corpus and report the performance over the

been applied to several classification tasks (MI_CoNLL Evaluation Corpus

lidit et al., 2008; dos Santos and Milidi2009; pus.

Fernandes et al., 2009a; Fernandes et al., 20141 pevelopment

ETL uses an annotated corpus, where the corre-

sponding class is attached to each example. Th'élere’ we report the development setup experimen-

corpus is partitioned into segments. Each segmeﬁ?l findings. In Taple L we.sjhow the performance
is a sequence of examples. Examples within thé)f the_ Fhree baseline cIaSS|_f|ers. The start and end
same segment are considered dependent. cofjassifiers are evaluated Wlth golde_n standard cue
versely, examples within different segments aré:hunks' All results are obtained with teND-X

considered independent. Moreover, an exampIQase”ne system, except when explicitly stated.
classification depends only on the features of the

examples from its corresponditmgntext window Table 1: Development performance of the three
Hence, to apply ETL we need to provide threeBaseline Classifiers.

modeling ingredients: segment definition, exam- Task Precision Recall F-score
ple ordering within a segment and the context win-

dow size. Given that, classification dependencies Cue 51.96  51.65 5180
are explored by the ETL classifier. Hendeel- Start scope 72.01 7222 7211
Hunteruses ETL as its learning engine. End scope  65.90 58.97 62.24

We include in the same segment the hedge can-
didates that have the same cue and start scope to-|n Table 2, we report the performance of the

kens. Within a segment, we order the candidategree entity identification ETL classifiers. Again,
by the order of the end token in the original cor-the start and end classifiers are evaluated with
pus. We use a context window of 7 candidatesgp|den standard cue chunks. These results indi-
i.e., three candidates before the current, the curreite that the end scope subtask is the hardest one.
candidate and three candidates after the current. |ndeed, our ETL classifier is not able to improve
the baseline classifier performance. The last ta-
ble line shows the performance of tRelHunter
We use the corpus provided in the CoNLL 2010method on the target task — hedge detection.
Shared Task to train and evaluate our hedge de- _

tection system. We add the following annota->-2 Evaluation

tion to the corpus: word stems, part-of-speectHere, we report the evaluation setup findings. In
tags, phrase chunks, and clause annotations. Wofiéble 3, we show the performance of the three

5 Experimental Results



Table 2: Development performance of the threeTable 5: Evaluation performance of tRelHunter

entity identification ETL classifiers and ttieel-
Huntermethod to hedge detection.

system when usingND andEND-X

End scope Precision Recall F-score

Task Precision Recall F-score
4596 38.04 41.63
Cue 81.23 73.20 77.01 END-X 57.84 50.73 54.05
Start scope 91.81 72.37 80.94
End scope 65.90 58.97 62.24
Hedge 53.49 3443 4189 petition end. The version with the END baseline

holds rank 7 at the competition.

baseline classifiers. The start and end classifierfable 6: Evaluation performance of the CoNLL
are evaluated with golden standard cue chunks. 2010 systems and tiiRelHuntermethod with the
END-Xend scope classifier.

Table 3: Evaluation performance of the three Official

Baseline Classifiers. Rank System P R F

Task Precision Recall F-score 1 Morante 5962 55.18 57.32
Startscope 75.51  75.73  75.62 3 Velldal 56.71 54.02 55.33
Endscope 81.01 7256  76.55 - RelHunier  57.84 50.73 54.05

4 Xinxin 57.42 47.92 52.24

5 Zhou 45.32 43.56 44.42

In Table 4, we report the performance of the 6 Shaodian 45.94 42.69 44.25
three entity identification ETL classifiers. Again, 7 Fernandes 45.96 38.04 41.63
the start and end classifiers are evaluated with 8 Vlachos 41.18 35.91 38.37
golden standard cue chunks. The last table line 9 gqzhao 34.78 41.05 37.66
shows the performance of thRelHuntermethod 10 BuzhouTang 34.49 31.85 33.12
on the target task — hedge detection. 11 Qiu 21.87 17.23 19.27
12 Tackstbm  02.27 02.03 02.15

Table 4: Evaluation performance of the three
entity identification ETL classifiers and theel-

Huntermethod to hedge detection.

Task Precision Recall F-score
Cue 78.73 77.05 77.88
Start scope 89.21 7786 83.15
End scope 81.01 7256  76.55
Hedge 57.84 50.73  54.05

In Table 5, we report the Hedge Detection per-
formances when usingND and END-X as the

6 Conclusion

We proposeRelHunter a new machine learning
based method for the extraction of structured in-
formation from text.RelHunterconsists in model-
ing the target structures as a relation over entities.
To learn how to extract this relation from teikel-
Hunter uses two main schemes: task decomposi-
tion and interdependent classification.
RelHunterdecomposes the identification of en-
tities into several but simple token classification

baseline classifier for the end scope subtask. Theubtasks. Additionally, the method generates a

use of END-X improves the overall systenf'-

score by more than ten twelve.
In Table 6, we report the Final Results of thewithin this relation.

CoNLL 2010 Shared Task — Closed Task 2. For RelHunteruses the Entropy Guided Transfor-

the sake of comparison, we also include the permation Learning algorithm as its learning engine.

formance of theRelHuntersystem withEND-X ~ As Hidden Markov Models, ETL is able to con-

that has been developed and tested after the coraider interdependent examplesRelHunter ex-

candidate relation over the identified entities and
discriminates between true and false candidates



ploits this powerful feature in order to tackle de- Eraldo R. Fernandes;i€ro N. dos Santos, and Ruy L.
pendencies among the hedge candidates. Milidi 0. Ir2F909a- dPOFIU%l:ﬁSWaQQUﬁ)QG pLOCGS_SIHQ
: : : service. InProceedings of the Web in Ibero-America
ReIHun.terls e.as"y. applled to many Complgx Alternate Track of the 18th World Wide Web Confer-
Computational Linguistic problems. We show its  gnce (WwWW2009Madrid.
effectiveness by applying it to hedge detection. » g g o J
Other successful applications of this method ard=raldo R. Fernandes, Bernardo A. Piregelo N. dos
. . Santos, and Ruy L. Milidi. 2009b. Clause identifi-
p:esler;tgfol)n (Fernandes et al., 2009b; I:(':"’nandescation using entropy guided transformation learning.
etal., :

In Proceedings of the 7th Brazilian Symposium in In-

RelHunterexplores the dependency among lin-  formation and Human Language Technology (STIL)
guistic structures by using a powerful feature of S0 Carlos, Brazil.
is restricted to sequentially organized examples, dos Santos, and Ruy L. Milidi 2010. A ma-
since ETL has been initially proposed for token chine learning approach to portuguese clause iden-
classification problems. Linguistic structures in- tfication. In Proceedings of the Nineth Interna-

. tional Conference on Computational Processing of
volve topologies that are frequently more complex e Portuguese Language (PROPOR)lume 6001
than that. The ETL algorithm may be extended to

of Lecture Notes in Artificial Intelligencgages 55—
consider more complex topologies. We conjecture 64, Porto Alegre, Brazil. Springer.

that it is possible to consider quite general topolo—Ruy L. Milidia, Gicero N. dos Santos, and Julio C.

gies. This would contribute to the construction of
better solutions to many Computational Linguistic
tasks.
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