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ABSTRACT

We consider the problem of anomaly detection in multi-
ple co-evolving data streams. In this paper, we introduce
FRAHST (Fast Rank-Adaptive row-Householder Subspace
Tracking). It automatically learns the principal subspace
from N numerical data streams and an anomaly is indi-
cated by a change in the number of latent variables. Our
technique provides state-of-the-art estimates for the sub-
space basis and has a true dominant complexity of only
5Nr operations while satisfying all desirable streaming con-
straints. FRAHST successfully detects subtle anomalous
patterns and when compared against four other anomaly de-
tection techniques, it is the only with a consistent Fy > 80%
in the ABILENE datasets as well as in the ISP datasets in-
troduced in this work.

1. INTRODUCTION

The paper is organized as follows. We first present the
problem and its motivation. Section 2 reviews the neces-
sary literature to enable the narrative over the proposed
FRAHST algorithm, which is then presented in section 3.
Section 4 discusses experimental studies that demonstrate
the effectiveness of our approach. Finally, we conclude in
section 5 with dicussions and future research direction.

1.1 Problem motivation

Anomaly detection is an important and challenging prob-
lem that has been treated within diverse research areas. Our
target domain is a data center, where huge volume of real-
time data needs to be monitored by operations team with
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the objective to maintain high-availability and quality of the
services.

The complexity of data centers poses many challenges for
system administrators, who must constantly monitor their
infrastructure to provide appropriate quality of service to
their users. Supervisory processes are fundamental when
running large systems and critical operations that need to
be resilient to faults. Downtime can directly affect a com-
pany’s income and certainly affect its reputation. Our goal
is to devise a system that can detect anomalies as soon as
possible in the infrastructure in order to minimize losses.
Alarms should increase the situational awareness of human
experts who can check the system and promptly act when
needed and are spared from the rather implausible burden
of continuous monitoring.

1.2 Data streams

Our work focus on measurements that are collected from
data centers and naturally exhibit local correlations such as
measurements from machines in the same cluster and from
routers with redundant network links.

In this context, massive amounts of data are produced
and it is not usually feasible to store all the data. The
streaming data model may be viewed as a generalization of
the traditional data warehouse model when the dataset size
grows to infinity. This work focus on numerical values since
they are ubiquitous to all monitored entities and a stream
is considered to be an open-ended multivariate time series.

Definition 1. (Stream data model) The dataset Z is a
growing sequence of N-dimensional vectors:

Z={z(1),2(2),...,2(),z(t+1),...}
with z(t) € RY for t > 1.

Researchers have started to redesign traditional mining
algorithms to satisfy the requirements of the data streams
context, where a algorithm must be incremental, work with
one or few passes over the data and adapt to concept drifts.
In the past few years, a new theory has emerged for reason-
ing about algorithms that work within these constraints on
space, time and number of passes [1, 7, 19].

There are clear opportunities to combine machine learning
algorithms with Data Stream Management Systems (DSMS)
and leverage the processing of the incoming raw data.

1.3 Anomaly Detection

Anomaly detection refers to the problem of finding pat-
terns in data that do not conform to expected behavior ac-



cording to both local and temporal contexts.

In data centers, an anomaly is a short-lived deviation from
its normal operation. Common source of anomalies are:
software bugs (e.g. memory leaks, not optimized database
queries), hardware malfunctioning (e.g. disk failures) or
faults in the underlying subsystems (e.g. broken commu-
nication network access link).

Definition 2. (Anomaly detection) An anomaly «; that
starts at instant 7; and lasts for ¢; intervals is represented as
a; = (743, ¢;). Given the data so far, the task is to output a
detection at interval d; for every a; such that ; < d; < 74+¢;
and (d; — 7;) is minimal.

A recent survey [4] note that anomaly detection has tra-
ditionally dealt with record or transaction type data. They
further indicate that most techniques require the entire test
data before detecting anomalies, and it mentions very few
online techniques. Indeed, most current algorithms assume
the dataset fits in main memory [31]. Both aspects violate
the requirement for real-time monitoring data streams.

It is a challenging task to detect failures in large dynamic
systems because anomalous events may appear rarely and
do not have fixed signature. The high dimensionality of
the observation data, together with the frequent changes
of system normal conditions resulting from user behavior
as well as from changes in the infrastructure itself makes
detection even more difficult.

In order to make the technique most widely applicable, an
any-time unsupervised method that does not require training
data is greatly desired as the nature of normal measurements
can be learned and the method can adapt to variations in
the structure of ‘normality’. Because it is difficult to obtain
training data, and we are more concerned with problems
never seen before that notoriously arise in complex systems.

1.3.1 Evaluation metrics

A solution to this task is evaluated in terms of the de-
tections considering the false alarms and missed anomalies.
In real datasets, less than 5% of the data points correspond
to anomalies, therefore the number of true negatives is very
high and consequently the false positive rate is not a very
meaningful measure. Hence, we choose the precision and
recall measures as they give a more informative picture, and
use their harmonic mean, the F} score, to represent both
metrics.

1.4 Related work

Our work is mostly inspired by promising results using
the SPIRIT algorithm [22], which associates anomalies to
changes in the latent dimension by approximating the prin-
cipal subspace incrementally. Using the same algorithm,
INTEMON [12] was evaluated in a data center at Carnegie
Mellon but no metric or benchmark data was reported.

Lakhina et al. [15, 16] popularized using principal compo-
nent analysis (PCA) for traffic anomaly detection where an
anomaly is detected when the magnitude of the projection
onto the anomalous subspace exceeds a Q-statistic thresh-
old. This work requires the entire dataset in memory and
an expensive SVD! computation, thus not appropriate for
real-time applications.

!Singular Value Decomposition

Although an online formulation of the Q-PCA algorithm
using a sliding window was suggested [17], it has been noted
that using stale measurements based on a previous block
of time to calculate the Q-statistic threshold resulted in a
high number of false positives [2]. Moreover, [24] criticizes
Lakhina’s approach for being too sensitive to the number
of principal components defining the normal subspace as a
parameter and it points out that a large body of work used
the same ABILENE dataset, for which the parameters were
highly optimized.

More recently, [2] address the streaming requirement and
propose KOAD (Kernel-based Online Anomaly Detection).
This work is an extended version of the Kernel Recursive
Least Squares algorithm (KRLS). Since it is based on a re-
gression method, the target variable is arbitrarily defined as
the sum of the values in the input vector.

In [2], KOAD is described to identify a region of normal-
ity that corresponds to a high-density region of the space.
[3] further formulates that the problem of learning such a
representation consists in constructing a Minimum Volume
Set (MVS). Therefore, the technique is evaluated against the
One-Class Neighbor Machine (OCNM) algorithm proposed
by [18] for estimating MVSs or density counter clusters, as
these are known in the MVS literature. This algorithm is a
block-based procedure that requires calculating the distance
from every data point to every other in the dataset and sim-
ilarly to Q-PCA will only be used for comparison purposes.
KOAD is shown to have similar detection performance to
the batch Q-PCA and OCNM approaches on the ABILENE
datasets.

1.5 Contributions

Our work points out that SPIRIT [22] is an extension
to the PASTD algorithm [30] and thus inherits two major
disadvantages that are widely known in the signal process-
ing community: inability to provide orthonormal estimates
and instability in the updating of the inverse power matrix
that will ‘explode’ in the case of fading signals due to its
use of the matrix inversion lemma. The loss of orthonor-
mality in the tracked basis is critical because it is neces-
sary by the rank estimation procedure in order to keep the
reconstruction error respecting the algorithm’s parameters.
A re-orthonormalization step implies a computational com-
plexity of O(N’I“2) per update and not (’)(Nr) as previously
advertised. In the worst case analysis, even though unlikely,
where r = N this algorithm would offer no advantage over a
batch SVD on the exponentially updated covariance matrix
with exact subspace estimates. However, there is no known
remedy for the numerical instability vulnerability.

We address those disadvantages and present a better algo-
rithm. Namely, we introduce FRAHST (Fast Rank-Adaptive
row-Householder Subspace Tracker) and the following are
the primary contributions:

e It is the first rank-adaptive extension to the new the
state-of-the-art recursive row-householder subspace
tracking algorithm [26].

e [t is numerically robust and stable.

e [t reaches a dominant complexity of O(N 7’) operations
per interval which is the lower bound for an algorithm
of this kind, which makes it more attractive for the
streaming scenario.



Symbol | Description

N Number of streams.

z(t) Data snapshot z(t) = [21(t)...zn ()] at time t.

« Forgetting factor.

D(t) Incrementally estimated covariance N X N matrix.

T Number of latent variables.

Q(t) N X r projection matrix. The column vectors are the
principal subspace basis.

h(t) r X 1 vector of latent variables.

zZ N X r vector of the reconstruction of z(t).

Eq Energy up to time t.

Eq Energy captured by the latent model up to time t.

fe, FE Lower and upper bounds on the fraction of total cap-
tured energy.

T Total number of intervals so far.

Table 1: Description of notation.

e It is the only algorithm that consistently has a F1 score
equal or greater than 80% in all datasets.

This paper introduces the ISP datasets that were anno-
tated by data center engineers at one of the largest? Inter-
net Service Provider in South America with incidents that
were not detected by the traditional monitoring systems.
We show that embedding lagged data into the input vec-
tor is an effective modeling strategy and allows FRAHST to
successfully capture temporal correlations and thus detect
subtle anomalies in these datasets.

2. BACKGROUND

2.1 Principal subspace tracking

The main idea behind our proposed method is to perform
dimensionality reduction while automatically adapting the
number of latent variables. Our technique is reminiscent to
principal component analysis, which is the optimum linear
transform in the least square sense [14].

In the context of data streams, the entire data covari-
ance matrix is not available at once and therefore the goal
is the recursive estimation of the principal subspace of the
time-recursively updated covariance matrix ®(t) of dimen-
sion N x N,

B(t)=a®(t—1)+2zt)z(1)" (1)

where z(t) € RV is the streaming data from Definition 1.
The exponential forgetting factor 0 < o < 1 allows us to
adapt to concept drifts over time.

A straightforward way to proceed is to apply SVD on the
®(t) at every step t. The eigenvalue decomposition can be
expressed as follows:

St) =V, AV &)+ VN ANV (1) (2)

We are interested in the dominant part of this decomposi-
tion, which is obtained by the dominant eigenvectors V ,.(¢)
that span the principal subspace of rank r. The direct SVD
approach typically requires (’)(N 3) operations but approxi-
mated schemes were devised to require much less operations.

Since usually r < N, the subspace tracking algorithms
can be classified with respect to their computational com-
plexity: methods requiring (’)(Ngr) or O(NQ) will be classi-
fied as high complexity; O(N 7’2) as medium complexity and

20ver 1,200 servers and 40,000 numerical charts generated
continuously.

finally those with O(N r) as low complexity. The algorithms
in the last class are called fast subspace trackers and they
are most suitable for real-time computing. The article of
[5] constitutes a review of the results up to 1990, treating
the first two classes, since the last class was not available at
the time. The most complete reviews for the fast subspace
trackers are available from [6] and [26].

2.2 Orthogonal iteration principle

Most (if not all) fast subspace trackers can be analyzed in
terms of the orthogonal iteration, which is a generalization
of the power method. The Owsley algorithm [21] was one
of its first applications where a single orthogonal iteration is
applied in each time step:

A() = 2(H)Q(t - 1) (3)
A) = Q1)S(®)

where A(t) is an auxiliary matrix N xr. Although Owsley
used a QR-factorization in (4), Strobach [26] notes that
if only a basis of the principal subspace is sought, then
the shape of the square r x r S-matrix can be left com-
pletely undetermined. This allow most methods to move
from O(N*rz) to O(Nr), but the tracked basis vectors in
Q(t) will no longer be the tracked eigenvectors. That is why
these methods are more precisely defined as principal sub-
space trackers (i.e. rather than eigenspace trackers). This
is not a disadvantage, because in most applications one is
only interested in tracking the projection matrix, namely
QLW ~VHV(H).

Besides relaxing the constraint on the S-matrix, fast meth-
ods seek the direct updating of the orthonormal factorization
of the A-matrix to avoid both an explicit covariance matrix
and an orthogonalization step. The simplified recurrence
from the model introduced in [25, 26]

QWS =aQ(t —1)S(t—1) +2() Q(t - 1) 2(t) (5)

h(t)

: orthonormal factorization (4)

underlies both subspace trackers of interest, and a brief
introduction follows in the next two subsections. The vector
h(t) correspond to the latent variables, which are analogous
to the principal components in PCA.

2.3 PAST

The Projection Approximation Subspace Tracking algo-
rithm, originally proposed in [30], is probably the best known
approach for tracking the principal subspace and was origi-
nally derived by minimizing the PCA criterion, expressed in
terms of the model’s reconstruction square error.

PAST is derived in [26] where Q(t — 1)7 is pre-multiplied
in (5) to obtain S(t) = aS(t — 1) + h(t)h ' (t). Therefore,
PAST assumes a priori Q(t —1)" Q(t) = I projection ap-
proximation, which explains the widely acknowledged loss
of orthonormality of the projection matrix in PAST as it
violates the subspace propagation model. The algorithm
follows after defining P(t) = S™'(t) and applying the ma-
trix inversion lemma very much like classical recursive least
squares (RLS) [11]. As a consequence, PAST is shown to
collapse with overflow errors in [27] under a very noisy sce-
nario.

PASTD is presented as a variant of the PAST algorithm
in the same influential article [30], using the deflation tech-
nique. Yang highlights that the main update step in the



PASTD is identical, except for the step size, to Oja’s learning
rule [20], which was designed for extracting the first principal
component by means of a single linear unit neural network.
PASTD has been extended in [29] to provide rank estimates
using information theoretic criteria, while SPIRIT [22] ex-
tends PASTD to allow rank discovery using energy thresh-
olding. They are nearly identical to PASTD, hence are clas-
sified as low complexity S~! domain algorithms with the
same computational complexity and same disadvantages.

2.4 Fast Householder Subspace Tracker

Despite decades of research on subspace trackers, the new
row-Householder approach [26] has recently appeared in the
literature and is the state-of-the-art for this problem. It fol-
lows similar shape from the classical LORAF3 [25] but is
motivated to achieve a dominant complexity of 3Nr oper-
ations per update, which is the lower bound for a problem
of this kind. This method provides excellent superior sub-
space estimates and guarantees that the subspace basis are
orthonormal.

The Householder reflection is very common in batch al-
gorithms such as in implementations of QR decomposition.
Strobach’s algorithm operates directly on the S-domain, that
are generally preferable than S™'-domain techniques [11].
The technique is purely reflection based and an updating of
inverse matrices is not used.

3. FRAHST

In this section, we present our method.

3.1 Tracking the subspace basis

We extend the original Householder subspace tracker [26]
by assuming a posteriori projection approximation (¢ =
0 in the original paper). The derivation of the fast row-
Householder tracker algorithm follows from the orthogonal
decomposition of the data vector:

2(t) = 2 (DZL () + Q(t — Dh(t) (6)
where z1(t)=2z({t) —Q(t—1)h(t) (7
Z(t) = z1 (H)zL (1) ®)
ZL(t) =272 (0)zL(t), )

Substituting (6) into (5) yields the following updating ex-
pression:

aS(t—1)+h(t)h'(t)

Q(t—1) z.()] x
(10)

Strobach proposes the Householder reflection to compress
the energy in the augmented (r + 1) x r S-matrix. The

Householder reflection is given by H = I — 2vv' where

v= {Z;] represents the plane of reflection with ||v|| = 1 and

HH = I. The goal is to annihilate the row vector in the
appended S-matrix as follows:

S(t aS(t—1)+h(t)h'(t
{ou(.)o} = H(Y) { (21/2)(:;hT(()t) “a

and the @-matrix may be updated accordingly

QM) z,(1)] =[QEt—1) ZL(t)] H(¢t). (12)

The solution to this problem is H (t) with a bottom-row
vector that belongs to the nullspace of the augmented S-
matrix. The condition yields a system of linear r equations.
Equation-array (13a)-(13j) in Figure 1 is a quasicode listing
of the entire subspace tracking algorithm.

3.2 Tracking the subspace rank

Most subspace tracking algorithms have the dimensional-
ity 7 of the principal subspace given as a parameter. Our
proposed method automatically discovers the rank r, so that
we maintain a high percentage fr of the energy E(t) =
Zthl lz(¢)]|>. Energy thresholding is a common method
to estimate the number of principal components [14] and is
adopted in SPIRIT [22], and enable detection of unusual
patterns in data center measurements [12]. We let the re-
construction of z(t) based on the previously learned pro-
jection matrix be defined as Z(t) = Q(¢t — 1)h(t) and we
similarly have the energy E‘(t) of the reconstruction Z. The
rank estimation procedure is shown in equations (13k)-(13u)
in Figure 1, where we incrementally estimate both energies
with the same forgetting factor from (1). It has been show
in [22] that the relative squared error of the reconstruction,
under this routine, satisfies:

Sl - 201 _
DY E10] E—

where T' is the number of data points read so far. Nev-
ertheless, this lemma only follows from the orthonormality
of the projection matrix Q(t), which is guaranteed by the
recursive row-Householder method.

Since r may change over time, our algorithm needs to re-
structure the two internal ) and S matrices. In order to
best preserve the properties of each matrix and maintain
the quality of the tracked subspace, we devise two simple
heuristics to restructure both matrices. When r is incre-
mented, we append the normalized orthogonal error given
by the current updated projection matrix. The vector zl(t)
from (13n) servers as an instantaneous estimate for the new
basis able to capture interesting information in the new di-
rection. When r is decremented, the matrices are truncated
as shown in (13s) and (13t) This is similar to ideas employed
in [29].

1-Fg<

_fE

3.3 Exception handling

The zero-input case requires the operation of the algo-
rithm in ‘idle mode’, which enables the algorithm to handle
cases of vanishing inputs. It can be seen in (13a) and (13b)
that a null input will zero both Z(¢) and h(t). Hence no
updating of the basis estimate in Q(t) is necessary because
there is no innovation in a zero input. We add a check to test
the condition Z(t) < o before (13c) to bypass all remaining
computations for that step. The singularity threshold o is
machine and platform dependent but is a positive constant
very close to zero.

Fortunately, our rank estimation routine will already guar-
antee that the S-matrix is not rank deficient, hence we do
not need to handle special conditions elsewhere.

3.4 Achieving lower asymptotic complexity

The entire algorithm shown in Figure 1 has time com-
plexity of 5Nr + O(N + r3) flops per update. The space
complexity O(N r) is similarly very low. Even though r is



parameters: 0 < fpE < FE <land 0 < a <1
r(0) «— 1
Q(0) « random orthonormal
S(0) <« oI, where o is a small positive constant
fort=1,2,...
read z(t) € RY
h(t) = QT (t - 1)z(t) (13a)
Z(t) =z (t)z(t) — " (t)h(t) (13b)
X(t) = aS(t—1)+ h(t)h' (1) (13¢)
XT()b(t) = 2V 2h(t) 222 b(t) (13d)
2,y _ 1 1 e
F=gt 4T (Ob(1) + 1) (15¢)
_e(t)
a(t) = m (13f)
1267
v(t) = [T(t)} b(t) (13g)
_ 1 onT
S(t) =X(t) - 50 (t)h - (t) (13h)
e(t) = 6(H)z(t) — Q(t — 1) [6(t)h(t) — v(t)] (13i)
Q) = Q(t — 1) — 2e(t)v ' (1) (13J)
E(t) = aB(t— 1) + ||z (13k)
E(t) = aBE(t—1)+ |h|? (131)
if E(t) < fgE(t) and r(t) < N (13m)
2l (1) = 2(t) - QMQ (t)=(t) (13n)
Qit+1) =[Q® ='®)/I=" W] (130)
st o
s+ =[%" 121 Cope] (30
rt+1)=r()+1 (13q)
else if E(t) > FgE(t) and r(t) > 1 (13r)
Q(t+ 1) = delete the last column of Q(t) (13s)
S(t+ 1) = delete last row & column of S(t) (13t)
r(t+1)=r(t)—1 (13u)
Figure 1: FRAHST algorithm

usually very small, one can perceive the typical O(r®) com-
plexity for solving the systems of linear equations in step
(13d) as a stumbling block.

We achieve excellent estimates and lower asymptotic com-
putational complexity of 5Nr + O(N + r2) following one of
the suggestion in [26]. In particular, we work with the QR
decompositions of the X and S r X r square matrices and
recognize that (13c) and (13h) are ‘QR = QR + rank one’
updates. The algorithm for such recurrent updates is widely
known and require O(r®) flops [8]. Once we have the QR
factors of the X (t), it is straight-forward to solve the linear
system from (13d) with complexity O (r2) by using back-
substitution.

Similarly, we account for the resizing of the QR factors
of the S-matrix using four procedures based on Givens rota-
tions from [9, Chapter 12.5] for both appending and deleting
column and row vector of the original matrix according to
steps (13p) and (13t) whilst maintaining the QR structure
with quadratic complexity.

last <+ 0
fort=1,2,...
FRAHST(t) (14)
if r(t) >r(t—1) (15)
if ¢ > last + 1: raise an alarm at ¢ (16)
last «— ¢ (17)

Figure 2: Anomaly detection routine

3.5 Real-time anomaly detection system

Our anomaly detection procedure follows from the rank-
adaptive nature of FRAHST. We propose to raise alarms
whenever there is an increase in rank, as shown in Figure 2.
This is the same intuition in [22], where observed data that
cannot be satisfactorily explained by the current model is
considered anomalous, and a new variable is introduced to
guarantee a predefined reconstruction error.

In Figure 2, the control variable last is used to suppress
alarms from consecutive rank increments which are likely to
be false.

3.5.1 Event-driven Architecture

We devise a event-driven architecture where all modules
are publishers or subscribers to an event broker. The most
important components in a data center can be monitored
using the Simple Network Management Protocol (SNMP),
which include routers, access servers, switches, bridges, hubs,
temperature sensors and computer hosts.

‘We monitor streams as defined by continuous queries over
the incoming raw data. More specifically, the user chooses
N data streams to be monitored together and a query can
be placed to join the corresponding underlying streams in
order to produce the input vector z(t) for our algorithm at
periodic uniform intervals — the join operator and the output
rate of the query are features of the core stream processing
engine. A open-source complex event processing engine® is
used to manage the processing of the raw data streams. Our
solution has been adopted in a real data center, where it has
been shown to achieve high throughput and low latency.

4. EXPERIMENTS

We implement all evaluated algorithms in R* [13]. We im-
plement the QR update functions from Section 3.4 by calling
the publicly available Fortran routines [10]. The streaming
scenario is simulated by iterating over each input vector.

The default parameters for FRAHST and SPIRIT are
set to the same recommended values from the literature [11,
22) @ =0.96 and [fg, Fg| = [0.96,0.98].

4.1 Datasets

We summarize the main features of all datasets in Table
2. Both CHLORINE and MOTES datasets were used for eval-
uating the SPIRIT algorithm in [22], where the accuracy in
terms of the relative reconstruction error was the only quan-
titative metric reported. We use the ARTIFICIAL dataset

3More information at http://www.espertech.com/.
R is a language and a software environment for computing.



Dataset N T duration | anomalies
ARTIFICIAL 32 | 10000 - -
CHLORINE 166 | 4310 | 15 days -
MoTES 48 7712 | 1 month -
ABILENE PACKETS | 121 | 2010 7 days 11
ABILENE FLOWS 121 | 2010 7 days 15
ISP ROUTERS 60 896 3 days 3
ISP SERVERS 24 600 2 days 8

Table 2: Description of datasets.

proposed in [26] to evaluate the quality of the tracked pro-
jection matrix.

The ABILENE dataset seems to be the only public anno-
tated datasets for the multivariate (numeric) anomaly detec-
tion problem. The ABILENE dataset was used to compare
KOAD, Q-PCA and OCNM in [2] for the anomaly detec-
tion problem. In their work, evaluation on the detections
are carried out ignoring the first 400 intervals, therefore we
follow the same approach here so the results are compatible.

We introduce the ISP dataset, which is comprised of two
distinct multivariate measurements collected in the data cen-
ter of a large Internet Service Provider. The measurements
were collected every 6 minutes via SNMP and operations
team kindly provided us the following two set of files with an-
notated anomalies from real incidents that were not alarmed
by the current monitoring solution based on naive thresh-
olding.

Routers contains statistics from the data center routers,
which are connected to five telecommunication opera-
tors by redundant network links. The dataset contains
the number of bits per second in each link for both
directions of communication averaged at each inter-
val. The measurements were taken from 16/04/2009
to 19/04/2009. There was a communication failure
with one of the operators, which caused two of the
links to malfunction. The large failure was preceded
by smaller loss of connectivity.

Servers contains CPU (idle, usr) and memory (used, avail-
able) usage statistics from each of the six machines
within a cluster serving a specific application. The
data was collected from 12/06/2009 to 13/06/2009,
and contains anomalous events due to an unoptimized
application that gained sudden popularity on the In-
ternet. There was unexpected heavy load in two of
the machines which had to be balanced to lower the
latencies for the end-users.

4.2 Tracked subspace evaluation

In Table 3, we show the relative reconstruction error is
calculated for the datasets CHLORINE, MOTES and ARTIFI-
CIAL.

According to the parameters both algorithms should main-
tain a reconstruction error between 0.02 and 0.04 by defini-
tion. Nevertheless, it can be seen that SPIRIT fails to fulfill
this requirement and the relative reconstruction errors are
twice from the expected values in two of the datasets.

Dataset FRAHST r SPIRIT r

CHLORINE 0.0236 1-3 | 0.0350 1-2
MOTES 0.0206 4-6 | 0.0804 4-5
ARTIFICIAL 0.0347 3-4 | 0.0899 34

Table 3: Relative squared reconstruction error for the rank
adaptive algorithms. Parameters [fg, Fg] = [0.96,0.98] im-
ply that the error should be between 0.02 and 0.04.

Method ABILENE | ABILENE | ISP ISP
PACKETS | FLows ROUTERS | SERVERS
FRAHST 0.91 0.87 0.80 0.86
SPIRIT 0.50 0.74 0.40 0.46
KOAD 0.86 0.93 0.15 0.54
Q-PCA 0.95 0.89 0.67 0.71
OCNM 0.77 0.93 0.25 0.50

Table 4: F; score on the anomaly detection task.

4.3 Anomaly detection evaluation

We summarize the anomaly detection results in Table 4.
We observe that ABILENE anomalies are mostly ‘spikes’,
which seems to benefit KOAD and OCNM. SPIRIT is less
sensitive to broken correlations, since it allows a greater than
expected reconstruction error. Surprisingly, KOAD had 21
false alarms in the ISP ROUTERS. We illustrate the behavior
of the different algorithms in Figure 3.

4.3.1 Considerations

The parameters for the algorithms KOAD, Q-PCA and
OCNM are set based on their best performance in the ABI-
LENE datasets [2]. For the ISP ROUTERS, we set KOAD’s
thresholds [v1, v2] = [0.04,0.08] to decrease false alarms but
detect at least one anomaly and let £ = 10 for OCNM oth-
erwise the algorithm raise alarms for all points in the ‘night
period’, since there is less traffic. For the ISP SERVERS, we
use for KOAD the same parameters used in the ABILENE
PACKETS, while for Q-PCA r = 2 yielded the best results.
In this dataset, FRAHST and SPIRIT perform better when
setting fr = 0.97.

4.3.2 Modeling strategy

Here, we present results for the ISP datasets exploring
two important modeling techniques:

Centering the data implies a principal subspace technique
become conceptually closer to incremental PCA, since
the captured energy is the variance of the principal
components. Under streaming constraints, the actual
mean of the data is unknown but we can incrementally
estimate the sample mean p(t) applying the same ex-
ponential forgetting factor as before:

) =" lap - )+ 20, (18)

The input data vector for the algorithm is now 2(t) =
2(t) - ().

Temporal correlations can be explicitly captured by en-
larging the dimension of the input vector by concate-
nating the lagged [ past values:

z2i(t) = [27(t) 27(t—1) ZTt-0]" (19)
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Figure 3: Determinant variables and thresholds (dotted
lines) for all algorithms during the anomaly detection eval-
uation on the Abilene Packets dataset.

where z;(t) € Y. Embedding such auto-correlations
allows our algorithm to learn a better model by work-
ing on a richer dimension.

We employ both techniques and 2;(t) becomes the input
data vector for the algorithms. For a real-time system, the
implementation of both techniques can be accomplished in
conjunction with a DSMS®. We continued normalizing the
incoming data only for the KOAD algorithm as suggested
by the authors, because we notice that otherwise this RLS-
based algorithm suffers from severe numerical instabilities
and fails to produce correct results. RLS algorithms are
notoriously unstable in a finite precision environment, and
there was not much we could do otherwise.

For the experiments with the ISP ROUTERS dataset, we
set [ = 5 which corresponds to a total lag of 30 minutes
and an enhanced dimension of 893 x 300. And for the ISP
SERVER dataset, we chose | = 10 which corresponds to a
total lag of one hour and an enhanced dimension of 591 x
240. Both sizes of auto-correlation windows are adequate
for monitoring these data streams and increasing this size
did not improve the results for any of the algorithms.

5.  CONCLUSIONS

We observed a few problems with the related methods:

5For example, in Esper, this can be accomplished using the
average statistics view and the previous function.

SPIRIT does not guarantee expected accuracy. This is
due to PASTD’s inability to provide orthonormal esti-
mates.

KOAD has too many false alarms in the ISP datasets and
over 11 non-intuitive parameters. The RLS mecha-
nism fails when normalization is not performed due to
numerical instabilities.

Q-PCA requires the rank that defines normality as a pa-
rameter, which is difficult and not adequate to define.

OCNM is very expensive computationally and results vary
greatly with the density function that is used.

In the light of these issues, we contribute FRAHST, a new
rank-adaptive algorithm for fast principal subspace tracking
with a true dominant complexity of O(N’/‘). The method
is robust and captures sudden changes in the correlation
structure of high-dimensional data.

We compared our technique with other two online and
two batch algorithms for anomaly detection in four different
datasets, and it achieved overall excellent performance be-
ing the only algorithm with Fi > 80% in all experimented
datasets. We showed how embedding lagged values in the
input vector allows temporal correlations to be captured by
a pre-processing step that can be easily performed online. It
effectively allowed a subtle broken correlation to be detected
corresponding to a serious failure caused by a telecommuni-
cation operator but which was not discovered by the tradi-
tional mechanisms when it occurred.

The results indicate that a robust subspace tracker is well
suited for spotting anomalies in streaming data of low in-
trinsic dimension, even when compared to algorithms that
can look at the entire dataset more than once. FRAHST
was consistently better than SPIRIT in all criteria, hence
we can safely recommend it for the same tasks SPIRIT has
been used in the literature, such as forecasting.

A real-time system was successfully implemented to mon-
itor the data center of a ISP and is a good use case for
unsupervised anomaly detection in the industry.

Our work touches many important subjects such dimen-
sionality reduction, rank estimation and anomaly detection
under the streaming constraint and offers a useful any-time
fast method for learning patterns in multiple streams of
data.

5.1 Future work

Our algorithm depends on intuitive parameters: the for-
getting factor o and desired reconstruction error 1 — fg.
But we acknowledge that they might vary accordingly to
the data, and it would be much better to have a totally
parameter-free algorithm. Adaptive memory concepts from
adaptive filtering might be applied; and new results from
random matrix theory concerning the Tracy-Widom distri-
bution seem to offer automatic ways to calculate optimal
dynamic detection thresholds under clear formulations [23].
Under this probabilistic framework, a degree of confidence
may be assigned to each alarm.

Another interesting direction of research is to extend the
work of [31] to handle multivariate data in a streaming sce-
nario, which would certainly contribute to the set of avail-
able techniques for the task considered in this paper.
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