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Abstract. This paper addresses the problems of testing strict satisfiability and decid-
ing logical implication for extralite schemas with role hierarchies. Using the OWL jar-
gon, extralite schemas support named classes, datatype and object properties, min-
Cardinalities and maxCardinalities, InverseFunctionalProperties, class subset con-
straints, and class disjointness constraints. Extralite schemas with role hierarchies also 
support subset and disjointness constraints defined for datatype and object proper-
ties. Strict satisfiability imposes the additional restriction that the constraints of a 
schema must not force classes or datatype or object properties to be always empty, 
and is therefore more adequate than the traditional notion of satisfiability in the con-
text of database design. The decision procedures outlined in the paper are based on 
the satisfiability algorithm for Boolean formulas in conjunctive normal form with at 
most two literals per clause, and explore the structure of a set of constraints, captured 
as a graph.  
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1. INTRODUCTION 

The question of satisfiability is often taken for granted when designing database schemas, perhaps based 

on the implicit assumption that real data provides a consistent database state. However, this implicit 

assumption is unwarranted when the schema results from the integration of several data sources, as in a 

data warehouse or in a mediation environment. Indeed, when we have to combine semantically hetero-

geneous data sources, we should expect conflicting data or, equivalently, mutually inconsistent sets of 

integrity constraints. The same problem also occurs during schema redesign, when changes in some 

constraints might create conflicts with other parts of the database schema. Naturally, the satisfiability 

problem is aggravated when the schema integration process has to deal with a large number of source 

schemas, or when the schema to be redesigned is complex. 

In this paper, we show how to test strict satisfiability and decide logical implication for extralite sche-

mas with role hierarchies. Using the OWL jargon, extralite schemas support named classes, datatype and 

object properties, minCardinalities and maxCardinalities, InverseFunctionalProperties, which capture 

simple keys, class subset constraints, and class disjointness constraints. Extralite schemas with role hie-

rarchies also support subset and disjointness constraints defined for datatype and object properties (for-

malized as atomic roles in Description Logics). Strict satisfiability imposes the additional restriction that 

the constraints of a schema must not force classes or datatype or object properties to be always empty, 

and is more adequate than the traditional notion of satisfiability in the context of database design. 

Albeit the syntax and semantics of extralite schemas is that of Description Logics, we depart from the 

tradition of Description Logics deduction services, which are mostly based on tableaux techniques 

[Baader and Nutt 2003]. The decision procedures outlined in the paper are based on the satisfiability 

algorithm for Boolean formulas in conjunctive normal form with at most two literals per clause, de-

scribed in [Aspvall et al. 1979]. The intuition is that the constraints we consider can be treated much in 

the same way as Boolean implications. However, cardinality constraints pose considerable technical 

problems to the proof of the theorems. The decision procedures depend on a constraint graph that cap-

tures the structure of a set of constraints.  

The results in this paper extend those presented in [Casanova et al. 2010] for extralite schemas without 

subset and disjointness constraints defined for datatype and object properties, and have not been pre-

sented elsewhere. They are motivated by the problem of computing the constraints of mediated schemas 

[Casanova et al. 2009], as well as traditional database problems [Lauschner et al. 2009]. For example, 

the constraint graph introduced in this paper can be used to create a procedure that detects inconsisten-

cies in a set of constraints and suggests alternatives to fix the problem. It also provides the basis for 

computing the greatest lower bound of two sets of constraints, which is behind a strategy to change the 

constraints of a mediated schema to accommodate the set of constraints of a new export schema.  

There is a vast literature on the formal verification of database schemas and on the formalization of ER 

and UML diagrams. Space limitations force us to single out just a few references. The problem of mod-

eling conceptual schemas in DL is discussed in [Borgida and Brachman 2003]. DL-Lite was introduced 

in [Artale et al. 2009; Calvanese et al. 2007; Calvanese et al. 2008] to address schema integration and 



  

query answering. Techniques from Propositional Logic to support the specification of Boolean and mul-

tivalued dependencies were addressed in [Hartmanna et al. 2009]. 

When compared with DL-Lite, extralite schemas with role hierarchies treat maxCardinality as a negated 

form of minCardinality and allow concept and role inclusions and disjunctions in such a way that ne-

gated descriptions occur only on the left-hand side of inclusions. While retaining expressiveness, this 

feature permits using a novel approach to the deductive services for a class of OWL schemas, which is 

the main contribution of the paper. 

The paper is organized as follows. Section 2 reviews DL concepts and introduces the notion of extralite 

schemas with role hierarchies. Section 3 illustrates the problems that arise with the interaction of con-

cept and role hierarchies. Section 4 shows how to test strict satisfiability and decide logical implication 

for extralite schemas with role hierarchies. Section 5 contains the conclusions. 

2. A CLASS OF DATABASE SCHEMAS 

2.1 A Brief Review of Attributive Languages 

We adopt a family of attributive languages [Baader and Nutt 2003] defined as follows. A language L in 

the family is characterized by an alphabet A, consisting of a set of atomic concepts, a set of atomic 

roles, the universal concept and the bottom concept, denoted by ⊤ and , respectively, and the universal 

role and the bottom role, also denoted by ⊤ and , respectively. 

The set of role descriptions of L is inductively defined as 

 An atomic role and the universal and bottom roles are role descriptions  

 If p is a role description, then the following expressions are role descriptions  

p
  

(the inverse of p)   p  (the negation of p)  

The set of concept descriptions of L is inductively defined as  

 An atomic concept and the universal and bottom concepts are concept descriptions 

 If e is a concept description, p is a role description and n is a positive integer, then the following 

expressions are concept descriptions  

  e (negation)   ( n p) (at-most restriction)  

  p (existential quantification) ( n p) (at-least restriction) 

An interpretation s for L consists of a nonempty set 
s
, the domain of s, whose elements are called indi-

viduals, and an interpretation function, also denoted s, where: 

s(⊤) = 
s
   if ⊤ denotes the universal concept       

s(⊤) = 
s
  

s
 if ⊤ denotes the universal role    

s() =    if  denotes the bottom concept or the bottom role 

s(A)  
s
   for each atomic concept A of A 

s(P)  
s
  

s
  for each atomic role P of A 



  

The function s is extended to role and concept descriptions of L as follows (where e is a concept de-

scription and p is a role description): 

s(p

) = s(p)


          (the inverse of s(p)) 

s(p) = 
s
  

s
  s(p)      (the complement of s(p) with respect to 

s
  

s
) 

s(e) = 
s
  s(e)        (the complement of s(e) with respect to 

s
) 

s(p) = {I
s
 / (J

s
)((I,J)s(p)}   (the set of individuals that s(p) relates to some individual) 

s(n p)={I
s
 / |{J

s
 / (I,J)s(p)}|  n} (the set of individuals that s(p) relates to at least n distinct  

individuals) 

 s(n p)={I
s
 / |{J

s
 / (I,J)s(p)}|  n} (the set of individuals that s(p) relates to at most n distinct  

individuals) 

A formula of L is an expression of the form u  v, called an inclusion, or of the form u | v, called a dis-

junction, or of the form u ≡ v, called an equivalence, where both u and v are concept descriptions or 

both u and v are role descriptions of L. We also say that u  v is a concept inclusion iff both u and v are 

concept descriptions, and that u  v is a role inclusion iff both u and v are role descriptions; and likewise 

for the other types of formulas. 

An interpretation s for L satisfies u  v iff s(u)  s(v), s satisfies u | v iff s(u)  s(v) = , and s satisfies  

u  v iff s(u) = s(v). A formula  is a tautology iff any interpretation satisfies . Two formulas are tauto-

logically equivalent iff any interpretation s that satisfies one formula also satisfies the other.  

Given a set of formulas , we say that an interpretation s is a model of  iff s satisfies all formulas in , 

denoted s  . We say that  is satisfiable iff there is a model of . However, this notion of satisfiability 

is not entirely adequate in the context of database design since it allows the constraints of a schema to 

force atomic concepts or atomic roles to be always empty. Hence, we define that an interpretation s is a 

strict model of  iff s satisfies all formulas in  and s(C), for each atomic concept C, and s(P), for 

each atomic role P; we say that  is strictly satisfiable iff there is a strict model for . In addition, we 

say that  logically implies a formula , denoted   , iff any model of  satisfies . 

The inference rules below capture some of the interactions between concept inclusions and disjunctions, 

on one hand, and role inclusions and disjunctions, on the other hand (where P and Q are atomic roles):  

We do not claim that these rules form a complete set of rules. In fact, they just help formulating the de-

finitions in Section 4.1. We also note that concept inclusions do not induce role inclusions, and role dis-

junctions do not induce concept disjunctions. That is, the following rules are unsound: 

Inclusion-transfer rules P  Q 

(n P)  (n Q) 
 

P  Q 

(n P

)  (n Q


) 

 

Disjunction-transfer rules 

 

(1 P) | (1 Q) 

P | Q 
 

(1 P

) | (1 Q


) 

P | Q 
 

 

 (Unsound rules) 

 

(1 P)  (1 Q) 

(1 P

)  (1 Q


) 

P  Q 
 

P | Q 

(1 P) | (1 Q) 
 

P | Q 

(1 P

) | (1 Q


) 

 

 



  

We will retake the discussion about the interaction of concept inclusions and disjunctions and role inclu-

sions and disjunctions in the examples of Section 3 and in the formal development of Section 4. 

2.2 Extralite Schemas with Role Hierarchies 

An extralite schema with role hierarchies is a pair S=(A,) such that 

 A is an alphabet, called the vocabulary of S 

  is a set of formulas, called the constraints of S, which must be of one the forms (where C and 

D denote atomic concepts, P and Q denote atomic roles, p denotes P or its inverse P

, and k is a 

positive integer): 

Domain Constraint:   P  C  (the domain of P is a subset of C)  

Range Constraint:   P

  C (the range of P is a subset of C) 

minCardinality constraint:  C  ( k p) (p maps each individual in C to at least k distinct  

    individuals)   

maxCardinality constraint:   C  ( k p) (p maps each individual in C to at most k distinct  

    individuals)   

Concept Subset Constraint:  C  D  (C is a subset of D) 

Concept Disjointness Constraint:  C | D (C and D are disjoint concepts) 

Role Subset Constraint:  P  Q  (P is a subset of Q) 

Role Disjointness Constraint: P | Q  (P and Q are disjoint roles) 

We loosely refer to the concept subset and disjointness constraints of S as the concept hierarchy of S, 

and to the role subset and disjointness constraints of S as the role hierarchy of S.  

The following are examples of inclusions that are not acceptable constraints: 

C  D   (negated atomic concept on the left-hand side of the concept inclusion)   

C | D   (negated atomic concept on the left-hand side of the concept disjunction) 

C  ( k P

)  (negated atomic concept on the left-hand side of the concept inclusion)   

P  Q   (negated atomic role on the left-hand side of the role inclusion)    

P

  Q   (inverse atomic role on the left-hand side of the role inclusion)  

C  ( k P)    (negated atomic role on the at-most restriction) 

We normalize a set of constraints by rewriting: 

P  C  as  ( 1 P)  C   

P

  C  as  ( 1 P


)  C    

C  ( k P)  as  C  ( k+1 P)   

C  ( k P

)  as  C  ( k+1 P


)   

C | D  as  C  D   (or, equivalently, D  C) 

P | Q  as  P  Q    (or, equivalently, Q  P) 

The formula on the right-hand column is called the normal form of the formula on the left-hand column. 

Observe that: a formula and its normal form are tautologically equivalent; the normal forms avoid the 



  

use of existential quantification and at-most restrictions; negated descriptions occur only on the right-

hand side of the normal forms; inverse roles do not occur in role subset or role disjoint constraints. 

Finally, we say that the concept descriptions P and (1 P) are descriptions of the domain of P, and that 

the concept descriptions P

 and (1 P


) are descriptions of the range of P. 

3. EXAMPLES 

We first introduce examples of concrete, albeit simple extralite schemas with role hierarchies to illu-

strate the definitions in Section 2. Then, we present more abstract examples that bring forward some of 

the interactions between concept and role hierarchies. 

Example 1: Figure 1(a) shows the ER diagram of the PhoneCompany schema. Fig. 1(b) formalizes the 

constraints: the first column shows the domain and range constraints; the second column depicts the 

cardinality constraints; and the third column contains the subset and disjointness constraints.  

The first column of Figure 1(b) indicates that: 

 number is an atomic role modeling an attribute of Phone with range String 

 duration is an atomic role modeling an attribute of Call with range String 

 location is an atomic role modeling an attribute of Call with range String 

 placedBy is an atomic role modeling a binary relationship from Call to Phone 

 mobPlacedBy is an atomic role modeling a binary relationship from MobileCall to Mobile-
Phone 

The second column of Figure 1(b) shows the cardinalities of the PhoneCompany schema:  

 number has maxCardinality and minCardinality both equal to 1 w.r.t. Phone 

 duration has maxCardinality and minCardinality both equal to 1 w.r.t. Call 

 location has maxCardinality and minCardinality both equal to 1 w.r.t. MobileCall 

 placedBy has maxCardinality and minCardinality both equal to 1 w.r.t. Call 

 (placedBy

 has unbounded maxCardinality and minCardinality equal to 0 w.r.t. Phone, which 

need not be explicitly declared) 

 mobPlacedBy has maxCardinality and minCardinality both equal to 1 w.r.t. MobileCall 

 (mobPlacedBy

 has unbounded maxCardinality and minCardinality equal to 0 w.r.t. Mobile-

Phone, which need not be explicitly declared) 

The third column of Figure 1(b) indicates that  

 MobilePhone and FixedPhone are subsets of Phone 

 MobilePhone and FixedPhone are disjoint atomic concepts 

 MobileCall is a subset of Call 

 mobPlacedBy is a subset of placedBy 



  

Call PlacedBy Duration Number 

mobPlacedBy 

mobLocation 

Fig. 2(a). ER diagram of the PhoneCompany2 schema (without cardinalities and disjunctions). 

mobNumber MobilePhone 

Phone 

MobileCall 

mobDuration 

Note that the constraints saying that MobilePhone is a subset of Phone and that MobileCall is a 

subset of Call do not imply that mobPlacedBy is a subset of placedBy. In general, concept inclusions 

do not imply role inclusions, as already discussed at the end of Section 2.1 (see also Example 3(a)).   

 

Example 2: Figure 2(a) shows the ER diagram of the PhoneCompany2 schema, and Figure 2(b) forma-

lizes the constraints, following the same organization as that in Figure 1(b). Note that: 

 MobilePhone and Phone are disjoint atomic concepts 

 MobileCall and Call are disjoint atomic concepts 

 PlacedBy is an atomic role modeling a binary relationship from Call to Phone 

 mobPlacedBy is an atomic role modeling a binary relationship from MobileCall to Mobile-
Phone 

 the constraints of the schema imply that PlacedBy and mobPlacedBy are disjoint roles, by the 

disjunction-transfer rule introduced at the end of Section 2.1 (see also Example 3(b)).                             

 number  Phone 

 number  String  

 duration  Call 

 duration  String  

 location  MobileCall 

 location  String  

 placedBy  Call 

 placedBy  Phone 

 mobPlacedBy  MobileCall 

 mobPlacedBy  MobilePhone 

Phone  ( 1 number) 

Phone  ( 1 number) 

Call  ( 1 duration) 

Call  ( 1 duration) 

MobileCall  ( 1 location) 

MobileCall  ( 1 location) 

Call  ( 1 placedBy) 

Call  ( 1 placedBy) 

MobileCall  ( 1 mobPlacedBy) 

MobileCall  ( 1 mobPlacedBy) 

FixedPhone  Phone 

MobilePhone  Phone 

MobilePhone | FixedPhone 

MobileCall  Call 

mobPlacedBy  placedBy 

 

Fig. 1(b). Formal definition of the constraints of the PhoneCompany schema. 

 

Call placedBy duration 

FixedPhone MobilePhone 

Phone number 

MobileCall mobPlacedBy location 

Fig. 1(a). ER diagram of the PhoneCompany schema (without cardinalities). 

{disjoint} 



  

Example 3: This example illustrates how the interaction between the concept and the role hierarchies 

may lead to unanticipated consequences. Let A and B be atomic concepts and P and Q be atomic roles.  

(a) Let  be the following set of constraints:  

(1)  A | B  (A and B are disjoint concepts)    

(2)  A  P  (A is a subset of the description of the domain of P)  

(3)  Q  B  (the description of the domain of Q is a subset of B)  

(4)  P  Q  (P is a subset of Q)  

Then, we have: 

(5)  P  Q  by (4) and definition of existential quantification  

(6)  A  B  by (2), (5), (3)    

Hence, any model s of  is such that s(A)=, in view of (1) and (6). Therefore,  has no strict model. 

(b) Let   be the following set of constraints:  

(7)  A | B  (A and B are disjoint)    

(8)  P  A  (the description of the domain of P is a subset of A)    

(9)  Q  B  (the description of the domain of Q is a subset of B)   

(10)  P  Q  (P is a subset of Q)   

Then, we have: 

(11)  P | Q  by (7), (8), (9)  

(12)  P | Q  by (11) and definition of existential quantification  

Hence, any model s of  is such that s(P)=, in view of (10) and (12). Thus,   has no strict model.  

4. TESTING EXTRALITE SCHEMAS WITH ROLE HIERARCHIES FOR STRICT SA-

TISFIABILITY 

4.1 The General Case 

Let  be a finite set of normalized constraints and  be a finite set of constraint expressions, that is, ex-

pression that may occur on the right- or left-hand sides of a normalized constraint. The alphabet is un-

derstood as the (finite) set of atomic concepts and roles that occur in  and . 

 Number  Phone 

 Number   String  

 Duration  Call 

 Duration  String  

 placedBy  Call 

 placedBy  Phone 

 mobDuration  MobileCall 

 mobDuration  String  

 mobLocation  MobileCall 

 mobLocation  String  

 mobPlacedBy  MobileCall 

 mobPlacedBy  MobilePhone 

Phone  ( 1 number) 

Phone  ( 1 number) 

Call  ( 1 Duration) 

Call  ( 1 Duration) 

Call  ( 1 placedBy) 

Call  ( 1 placedBy) 

MobileCall  ( 1 mobDuration) 

MobileCall  ( 1 mobDuration) 

MobileCall  ( 1 mobLocation) 

MobileCall  ( 1 mobLocation) 

MobileCall  ( 1 mobPlacedBy) 

MobileCall  ( 1 mobPlacedBy) 

MobilePhone | Phone 

MobileCall | Call 

 

 

Fig. 2(b). Formal definition of the constraints of the PhoneCompany2 schema. 

 



  

We say that the complement of a non-negated description c is c, and vice-versa. We denote the com-

plement of a description d by d . Recall that   logically implies e   iff any model of  must assign an 

empty set to the description e, and that   logically implies ⊤  e iff any model of  must assign the set 

of all individuals to e, if e is a concept description, and the set of all pairs of individuals, if e is a role 

description. Proposition 1 states properties of descriptions that will be used in the rest of this section.  

Proposition 1: Let e, f and g be concept or role descriptions, P and Q be atomic roles, and p be either P 

or P

. Then, we have: 

(i)  (n p)  (m p) is a tautology, where 0<m<n 

(ii)  e  f is tautologically equivalent to f  e   

(iii)  if  logically implies e  f and f  g, then  logically implies e  g 

(iv)  if  logically implies P  Q, then  logically implies (k P)  (k Q) and (k P

)  (k Q


)  

(soundness of the inclusion-transfer rules) 

(v)  if  logically implies (1 P)  (1 Q) or (1 P

)  (1 Q


), then  logically implies P  Q 

(soundness of the disjunction-transfer rules) 

(vi)  if  logically implies e  f and e  f, then  logically implies e   

(vii)  if  logically implies (1 P)   or (1 P

)  , then  logically implies P   

(viii)  if  logically implies P  , then  logically implies (k P)  , (k P

)  , ⊤  (k P) and  

⊤  (k P

).   

In the next definitions, we will introduce graphs whose nodes are labeled with expressions or sets of 

expressions. Then, we use such graphs to create an efficient procedure to test if  is strictly satisfiable. 

Finally, we show how to use the graphs to decide logical implication for . These results extend similar 

results for concept hierarchies described in [Casanova et al. 2010]. 

To simplify the definitions, if a node K is labeled with an expression e, then K denotes the node labeled 

with e . We will also use K→M to indicate that there is a path from a node K to a node M, and K↛M to 

indicate that no such path exists; we will use e→f  to denote that there is a path from a node labeled with 

e to a node labeled with f, and e↛f to indicate that no such path exists. 

Definition 1: The labeled graph g(,) that captures  and , where each node is labeled with an ex-

pression, is defined in four stages as follows: 

Stage 1:  

Initialize g(,) with the following nodes and arcs:   

(i)  For each atomic concept C, g(,) has exactly one node labeled with C. 

(ii)  For each atomic role P, g(,) has exactly one node labeled with P, one node labeled with  

(1 P), and one node labeled with (1 P

).  

(iii)  For each expression e that occurs on the right- or left-hand side of an inclusion in , or that oc-

curs in , other than those in (i) or (ii), g(,) has exactly one node labeled with e. 



  

(iv)  For each inclusion e  f in , g(,) has an arc (M,N),where M and N are the nodes labeled 

with e and f, respectively. 

Stage 2:   

Until no new node or arc can be added to g(,),  

For each role inclusion P  Q in ,  

For each node K, 

(i)  if K is labeled with (k P), for some k>0, then add a node L labeled with (k Q), and 

an arc (K,L), if no such node and arc exists.  

(ii)  if K is labeled with (k P

), for some k>0, then add a node L labeled with (k Q


), and 

an arc (K,L), if no such node and arc exists. 

(iii)  if K is labeled with (k Q), for some k>0, then add a node L labeled with (k P), and 

an arc (L,K), if no such node and arc exists. 

(iv)  if K is labeled with (k Q

), for some k>0, then add a node L labeled with (k P


), and 

an arc (L,K), if no such node and arc exists.  

Stage 3:   

Until no new node or arc can be added to g(,), 

(i)  If g(,) has a node labeled with an expression e, then add a node labeled with e , if no such 

node exists. 

(ii)  If g(,) has a node M labeled with (m p) and a node N labeled with (n p), where p is either 

P or P

 and 0<m<n, then add an arc (N,M), if no such arc exists. 

(iii)  If g(,) has an arc (M,N), then add an arc ( N , M ), if no such arc exists. 

Stage 4:   

Until no new node or arc can be added to g(,),  

for each pair of nodes M and N such that M and N are labeled with (1 P) and (1 Q), respec-

tively, and there is a path from M to N,  

add arcs (K,L) and ( L , K ),where K and L are the nodes labeled with P and Q, respectively, 

if no such arcs exists.    

Note that Stage 1(iv) reflects Proposition 1 (ii), Stage 2 corresponds to Proposition 1 (iv), Stage 3(ii) to 

Proposition 1(i), Stage 3(iii) to Proposition 1(ii), and Stage 4 to Proposition 1(v).  

Definition 2: The labeled graph G(,) that represents  and , where each node is labeled with a set 

of expressions, is defined from g(,) by collapsing each clique of g(,) into a single node labeled 

with the expressions that previously labeled the nodes in the clique. When  is the empty set, we 

simply write G() and say that the graph represents .   

Definition 3: Let G(,) be the labeled graph that represents  and . We say that a node K of G(,) 

is a -node with level n, for a non-negative integer n, iff one of the following conditions hold:  

(i)  K is a -node with level 0 iff there are nodes M and N, not necessarily distinct from K, and a 

positive expression h such that M and N are respectively labeled with h and h, and K→M and 

K→N. 



  

(ii)  K is a -node with level n+1 iff 

(a) There is a -node M of level n, distinct from K, such that K→M, and M is the -node 

with the smallest level such that K→M, or 

(b) K is labeled with a minCardinality constraint of the form (k P) or of the form (k P

) 

and there is a -node M of level n such that M is labeled with P, or 

(c) K is labeled with an atomic role P and there is a -node M of level n such that M is la-

beled with a minCardinality constraint of the form (1 P) or of the form (1 P

).  

In case (i), note that, if K=M=N, then K is labeled with both h and h; other special cases occur when 

K=M, and when K=N. Also note that cases (i) and (ii-a) of Definition 3 correspond to Proposition 1(vi), 

case (ii-b) to Proposition 1(vii), and case (ii-c) to Proposition 1(viii). 

We are now ready to state the first result of the paper (see the Appendix for a proof). 

Theorem 1: Let  be a set of normalized constraints. Let G() be the graph that represents . Then,  is 

strictly satisfiable iff G() has no -node labeled with an atomic concept or an atomic role.  

Based on Theorem 1, we can then create a procedure that receives as input a set  of constraints, norma-

lizes the constraints in , constructs the graph G() that represents , tests if G() has no -node labeled 

MobileCall 

Fig. 3. The graph representing . 
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with an atomic concept or an atomic role, and outputs “YES -  is strictly satisfiable”, if the test suc-

ceeds, and “NO -  is not strictly satisfiable”, otherwise. Furthermore, we note that the procedure is  

quadratic on the size of .  

Example 4: Let  be the following subset of the constraints of the PhoneCompany2 schema, introduced 

in Example 2 (we do not consider all constraints to reduce the size of the example): 

(1)  placedBy  Call  normalized as: (1 placedBy)  Call 
(2)  placedBy


  Phone   normalized as: (1 placedBy


)  Phone 

(3)  mobPlacedBy  MobileCall normalized as: (1  mobPlacedBy)  MobileCall 
(4)  mobPlacedBy


  MobilePhone  normalized as: (1  mobPlacedBy


)  MobilePhone 

(5) Call  (1 placedBy)  normalized as: Call  (2 placedBy) 
(6) MobilePhone | Phone  normalized as: MobilePhone  Phone 
(7) MobileCall | Call   normalized as: MobileCall  Call 

Figure 3 depicts G(), the graph that represents , using the normalized constraints. In special, the dot-

ted arrows highlight the paths that correspond to the conditions of Definition 2(ii), and dashed arrows 

indicate the arcs that Definition 2(ii) requires to exist, which capture the derived constraint: 

(8) mobPlacedBy | placedBy  normalized as: mobPlacedBy  placedBy 

Since G() has no -node,  is strictly satisfiable, by Theorem 1.  

Example 5: Let  be the following subset of the constraints of the PhoneCompany schema, introduced 

in Example 1 (again we do not consider all constraints to reduce the size of the example): 

(1)  placedBy  Call  normalized as: (1 placedBy)  Call 
(2)  placedBy


  Phone   normalized as: (1 placedBy


)  Phone 

(3) Call  (1 placedBy)  normalized as: Call  (2 placedBy) 
(4) MobileCall  Call 
(5) mobPlacedBy  placedBy   

Let   be defined by adding to  a new atomic concept, ConferenceCall, and two new constraints: 

(6) ConferenceCall  Call 
(7) ConferenceCall  (2 placedBy)    

These new constraints intuitively say that conference calls are calls placed by at least two phones. How-

ever, this apparently correct modification applied to the PhoneCompany schema forces Conference-

Call to always have an empty interpretation. Example 6 will also show that (6) is actually redundant. 

Indeed, Figure 4 depicts G(), the graph that represents , using the normalized constraints. Note that 

there are paths from the node labeled with ConferenceCall to nodes labeled with Call and Call, 

as well as to nodes labeled with (2 placedBy) and (2 placedBy) and nodes labeled with  

(1 placedBy)  and (1 placedBy) (all arcs of such paths are shown in dashed lines in Figure 4). 

Hence, the node labeled with ConferenceCall is a -node of G(), which implies that   is not 

strictly satisfiable, by Theorem 1.    

Indeed, any interpretation s that satisfies  is such that the following implications hold 

s(ConferenceCall)  s(Call) and s(ConferenceCall)  s(Call) 

which implies that s(ConferenceCall)=.  



  

Let G( {e, f}) denote the graph that represents the set of constraints  with new nodes labeled with 

descriptions e and f (that is,  ={e, f} in Definitions 1 and 2). From Theorem 1, we can also prove that: 

Theorem 2. Let  be a set of normalized constraints and  be a normalized constraint. Assume that  is 

of the form e  f. Then,    iff one of the following conditions holds: 

(i)  The node of G( {e, f}) labeled with e is a -node; or 

(ii)  The node of G( {e, f}) labeled with f is a ⊤-node; or 

(iii)  There is a path in G( {e, f}) from the node labeled with e to the node labeled with f.  

Based on Theorem 2, we can then create a procedure that receives as input a set  of constraints and a 

constraint e  f, and decides whether or not   e  f. The procedure is again quadratic on the size of .  

Example 6: This example illustrates the three cases of Theorem 2. 

(a) Let  be the set of constraints considered in Example 5. Let G() be the graph representing ,  

shown in Figure 4. Let  be the constraint ConferenceCall  (1 placedBy

). Note that   is of the 

form e  f, where e = ConferenceCall and f =(1 placedBy

). Then, G( {e, f}) is equal to G(), 

since G() already contains nodes labeled with ConferenceCall and with (1 placedBy

). Recall 

from Example 5 that the node labeled with ConferenceCall is a -node of G(), and hence of   

G( {e, f}). Then, by Theorem 2(i),    ConferenceCall  (1 placedBy

).  

(b) Let  and G() be as before. Let  be the constraint Phone  ConferenceCall. Note that   is 

of the form e  f, where e = Phone and f = ConferenceCall. Since the node labeled with Confe-

renceCall is a -node of G( {e, f}), the node labeled with ConferenceCall is ⊤-node of  

G( {e, f}). Hence, by Theorem 2(ii),    Phone  ConferenceCall.  
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Fig. 4. The graph representing . 
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(c) Let  and G() be as before. Let  be the constraint ConferenceCall  Call.  Note that  is of 

the form e  f, where e = ConferenceCall and f = Call. Since there is a path in G( {e, f}) from 

the node labeled with ConferenceCall to the node labeled with Call, by Theorem 2(iii), we have that 

  ConferenceCall  Call.  

(d) Let  be the subset of the constraints of the PhoneCompany2 schema introduced in Example 4. Let  

be the constraint Call  (2 mobPlacedBy). Note that  is of the form e  f, where e = Call and  

f = (2 mobPlacedBy). Then, G(  {e, f}) is the graph in Figure 5, with two new nodes and two 

new arcs (highlighted in dashed lines in Figure 5), by virtue of Definition 1(iii) and (v). Since there is a 

path in G(  {e, f}) from the node labeled with Call to the node labeled with (2 mobPlacedBy), 

by Theorem 2(iii), we have that   Call  (2 mobPlacedBy).  

4.2 Testing Strict Satisfiability for a Class of Extralite Schemas 

Let   be a set of normalized constraints which contains neither role disjunctions nor maxCardinality 

constraints. We show how to reduce the problem of testing the strict satisfiability of  to testing the 

strict satisfiability of a set of concept inclusions derived from , using the inclusion-transfer rules intro-

duced at the end of Section 2.1. 

A role chain in  of length n is a sequence of role inclusions of the form P0  P1, P1  P2 ,…, Pn-1  Pn. 

A role chain P0  P1, P1  P2 ,…, Pn-1  Pn is a role cycle iff Pn = P0. We say that   is role acyclic iff   

has no role cycle. Since all atomic roles in a role cycle denote the same binary relation, we may always 

assume that  is role acyclic (by collapsing all atomic roles in a role cycle into a single atomic role).  

Assume that  is role acyclic and let P be an atomic role. We say that P has level 0 in  iff P does not 

occur on the right-hand side of a role inclusion in , and P has level m in  iff the longest role chain 

ending on P has length m. The height of  w.r.t. roles is N iff the longest role chain in  has size N. 

MobileCall 

Fig. 5. Partial representation of the graph G( {e, f}). 
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Definition 5: Let  be a set of normalized constraints and assume that  is role acyclic. The set C() 

capturing  is the set of concept inclusions defined as follows: 

(i)  All concept inclusions in  are in C(). 

(ii)  For each concept description of the form (k Q) that occurs on the right- or left-hand side of an 

inclusion in , for each role chain P0  P1, P1  P2 ,…, Pn-1  Pn in  such that Pn = Q, the con-

cept inclusions (k Pi)  (k Pi+1) and (k 
iP )  (k 

1iP ) are in C(), for each i[0,n).  

(iii)  These are the only formulas in C().   

Theorem 3. Let  be a set of normalized constraints that contains neither role disjunctions nor maxCar-

dinality constraints and that  is role acyclic. Then,  is strictly satisfiable iff C() is strictly satisfiable.  

(see the Appendix for a proof). 

The interested reader might verify that the construction of the interpretation r in the above proof fails for 

role disjunctions and maxCardinality constraints. Indeed, the construction of r(P) in (2) guarantees that r 

satisfies role inclusions (Case 3), but not role disjunctions. Furthermore, the construction of r(P) in (2.2) 

does not imply that s((k P))  r((k P)), which means that step (10) in the argument of Case 6 cannot 

be adapted to maxCardinality constraints. 

In summary, Theorem 3 implies that the problem of testing the strict satisfiability of extralite schemas 

with role hierarchies, but without role disjunctions and maxCardinality constraints, reduces to the prob-

lem of testing the strict satisfiability of extralite schemas without role hierarchies. This reduction then 

permits ignoring the role hierarchy when testing strict satisfiability. For a theoretic perspective, it allows 

the direct use of the results in [Casanova et al. 2010] for extralite schemas without role hierarchies, and 

avoids going through the rather complex proof of Theorem 1, stated in Section 4.1. 

5. CONCLUSIONS 

We first introduced extralite schemas with role hierarchies that are sufficiently expressive to encode 

commonly used ER model and UML constructs, including relationship hierarchies. Then, we illustrated 

what problems arise when the concept and role hierarchies interact. Finally, we showed how to efficient-

ly test strict satisfiability and decide logical implication for extralite schemas with role hierarchies.  

The results in Section 4 are novel and cover a technically complex issue, which was overcome basically 

by the definition of a graph that represents the set of concept and role inclusions and disjunctions of a 

schema. We stress that the question of strict satisfiability becomes a serious issue when the schema re-

sults from the integration of several data sources, or when the schema to be redesigned is complex. 

Finally, as future work, we plan to investigate the problem of efficiently testing extralite schemas for 

finite satisfiability [Rosati 2008].    
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APPENDIX - PROOFS OF THE MAIN RESULTS 

A.1 Proof of Theorem 1 

Let  be a finite set of normalized constraints and  be a finite set of constraint expressions, that is, ex-

pression that may occur on the right- or left-hand sides of a normalized constraint. The alphabet is un-

derstood as the (finite) set of atomic concepts and roles that occur in  and .  

Recall that we say that the complement of a non-negated description c is c, and vice-versa. We denote 

the complement of a description d by d . Also recall that   logically implies e   iff any model of  

must assign an empty set to the description e, and that   logically implies ⊤  e iff any model of  

must assign the set of all individuals to e, if e is a concept description, and the set of all pairs of individ-

uals, if e is a role description. Proposition 1 states properties of descriptions that will be used in the rest 

of this section.  

Proposition 1: Let e, f and g be concept or role descriptions, P and Q be atomic roles, and p be either P 

or P

. Then, we have: 

(i)  (n p)  (m p) is a tautology, where 0<m<n 

(ii)  e  f is tautologically equivalent to f  e   

(iii)  If  logically implies e  f and f  g, then  logically implies e  g 

(iv)  If  logically implies P  Q, then  logically implies (k P)  (k Q) and (k P

)  (k Q


)  

(soundness of the inclusion-transfer rules) 

(v)  If  logically implies (1 P)  (1 Q) or (1 P

)  (1 Q


), then  logically implies  

P  Q (soundness of the disjunction-transfer rules) 

(vi)  If  logically implies e  f and e  f, then  logically implies e   

(vii)  If  logically implies (1 P)   or (1 P

)  , then  logically implies P   

(viii)  If  logically implies P  , then  logically implies (k P)  , (k P

)  , ⊤  (k P) 

and ⊤  (k P

).   

Proof 

(The proof follows directly from the definitions in Section 2). 

In the next definitions, we will introduce graphs whose nodes are labeled with expressions or sets of 

expressions. To simplify the definition, if a node K is labeled with an expression e, then K denotes the 

node labeled with e . We will also use K→M to indicate that there is a path from a node K to a node M, 

and K↛M to indicate that no such path exists; we will use e→f  to denote that there is a path from a 

node labeled with e to a node labeled with f, and e↛f to indicate that no such path exists. 



  

Definition 1: The labeled graph g(,) that captures  and , where each node is labeled with an ex-

pression, is defined in four stages as follows: 

Stage 1:  

Initialize g(,) with the following nodes and arcs:   

(i)  For each atomic concept C, g(,) has exactly one node labeled with C. 

(ii)  For each atomic role P, g(,) has exactly one node labeled with P, one node labeled with  

(1 P), and one node labeled with (1 P

).  

(iii)  For each expression e that occurs on the right- or left-hand side of an inclusion in , or that oc-

curs in , other than those in (i) or (ii), g(,) has exactly one node labeled with e. 

(iv)  For each inclusion e  f in , g(,) has an arc (M,N),where M and N are the nodes labeled 

with e and f, respectively. 

Stage 2:   

Until no new node or arc can be added to g(,),  

For each role inclusion P  Q in ,  

For each node K, 

(v)  if K is labeled with (k P), for some k>0, then add a node L labeled with (k Q), and 

an arc (K,L), if no such node and arc exists.  

(vi)  if K is labeled with (k P

), for some k>0, then add a node L labeled with (k Q


), and 

an arc (K,L), if no such node and arc exists. 

(vii)  if K is labeled with (k Q), for some k>0, then add a node L labeled with (k P), and 

an arc (L,K), if no such node and arc exists. 

(viii)  if K is labeled with (k Q

), for some k>0, then add a node L labeled with (k P


), and 

an arc (L,K), if no such node and arc exists.  

Stage 3:   

Until no new node or arc can be added to g(,), 

(iv)  If g(,) has a node labeled with an expression e, then add a node labeled with e , if no such 

node exists. 

(v)  If g(,) has a node M labeled with (m p) and a node N labeled with (n p), where p is either 

P or P

 and m<n, then add an arc (N,M), if no such arc exists. 

(vi)  If g(,) has an arc (M,N), then add an arc ( N , M ), if no such arc exists. 

Stage 4:   

Until no new node or arc can be added to g(,),  

for each pair of nodes M and N such that M and N are labeled with (1 P) and (1 Q), respec-

tively, and there is a path from M to N,  

add arcs (K,L) and ( L , K ),where K and L are the nodes labeled with P and Q, respectively, 

if no such arcs exists.    



  

Definition 2: The labeled graph G(,) that represents  and , where each node is labeled with a set 

of expressions, is defined from g(,) by collapsing each clique of g(,) into a single node labeled 

with the expressions that previously labeled the nodes in the clique. When  is the empty set, we 

simply write G() and say that the graph represents .   

Definition 3: Let G(,) be the labeled graph that represents  and . We say that a node K of G(,) 

is a -node with level n, for a non-negative integer n, iff one of the following conditions hold:  

(i)  K is is a -node with level 0 iff there are nodes M and N, not necessarily distinct from K, and a 

positive expression h such that M and N are respectively labeled with h and h, and K→M and 

K→N. 

(ii)  K is is a -node with level n+1 iff 

(a) There is a -node M of level n, distinct from K, such that K→M, and M is the -node 

with the smallest level such that K→M, or 

(b) K is labeled with a minCardinality constraint of the form (k P) or of the form (k P

) 

and there is a -node M of level n such that M is labeled with P, or 

(c) K is labeled with an atomic role P and there is a -node M of level n such that M is la-

beled with a minCardinality constraint of the form (1 P) or of the form (1 P

).  

In Case (i), note that, if K=M=N, then K is labeled with both h and h; other special cases occur when 

K=M, and when K=N. 

Definition 4: Let G(,) be the labeled graph that represents  and . Let K be a node of G(,). We 

say that  

(i)  K is a -node iff K is a -node with level n, for some non-negative integer n. 

(ii)  K is a ⊤-node iff K is a -node.  

To avoid repetitions, in what follows, let G(,) be the graph that represents  and  . Proposition 2 

lists properties of g(,) that directly reflect the structure of the set of constraints . Proposition 3 ap-

plies the results in Proposition 2 to obtain properties of G(,) that are fundamental to establish Lemma 

1 and Theorems 1 and 2. Finally, Proposition 4 relates the structure of G(,) with the theory of , i.e., 

the logical consequences of .  

Proposition 2: For any pair of nodes K and M of g(,), 

(i)  If (K,M) is an arc of g(,) and if M is labeled with a positive expression, then K is labeled 

with a positive expression. 

(ii)  If (K,M) is an arc of g(,) and if K is labeled with a negative expression, then M is labeled 

with a negative expression. 

(iii)  If there is a path K→M in g(,) and if M is labeled with a positive expression, then K is la-

beled with a positive expression. 

(iv)  If there is a path K→M in g(,) and if K is labeled with a negative expression, then M is la-

beled with a negative expression. 



  

Proof 

First observe that 

(1) if a  b is a normalized constraint in , then a is positive and b is either positive or negative. Fur-

thermore, b  a is such that b positive or negative and a is negative.  

Let K and M be a pair of nodes of g(,). 

(i) Assume that (K,M) is an arc of g(,) and that M is labeled with a positive expression. Then, by (1) 

and Def. 1, K is labeled with a positive expression. 

(ii) Assume that (K,M) is an arc of g(,) and that K is labeled with a negative expression. Then, by (1) 

and Def. 1, M is labeled with a negative expression. 

(iii) Assume that there is a path K→M in g(,) and that M is labeled with a positive expression f. Sup-

pose that K is labeled with an expression e. Since K→M, there is a sequence of nodes N0, N1,…,Nm of 

g(,) respectively labeled with h0, h1,…,hm such that h0 = e, hm = f and (hi-1, hi) is an arc of g(,), for 

i[0,m]. By (backward) induction on the length of the path and using (i), since hm = f is a positive ex-

pression by assumption, we may conclude that h0 = e is a positive expression, as desired. 

(iv) Assume that there is a path K→M in g(,) and that K is labeled with a negative expression e. Sup-

pose that M is labeled with an expression f. Since K→M, there is a sequence of nodes P0, P1,…,Pn of 

g(,) respectively labeled with l0, l1,…,ln such that l0 = e, ln = f and (li-1, li) is an arc of g(,), for 

i[0,n]. By (forward) induction on the length of the path and using (ii), since l0 = e is a negative expres-

sion by assumption, we may conclude that ln = f is a negative expression.   

Proposition 3: 

(i)  G(,) is acyclic. 

(ii)  For any node K of G(,), for any expression e, we have that e labels K iff e labels K . 

(iii)  For any pair of nodes M and N of G(,), we have that MN iff N  M . 

(iv)  For any node K of G(,), one of the following conditions holds: 

(a) K is labeled only with atomic concepts or minCardinality constraints of the form (m p), 

where p is either P or P

 and m  1, or 

(b) K is labeled only with atomic roles, or 

(c) K is labeled only with negated atomic concepts or negated minCardinality constraints of 

the form (m p), where p is either P or P

 and m  1, or 

(d) K is labeled only with negated atomic roles.   

(v)  For any pair of nodes K and M of G(,), 

(a) If there is a path K→M in G(,) and if M is labeled with a positive expression, then K is 

labeled only with positive expressions. 

(b) If there is a path K→M in G(,) and if K is labeled with a negative expression, then M is 

labeled only with negative expressions. 



  

(vi)  For any node K of G(,), 

(a) If K is a -node, then K is labeled only with atomic concepts or minCardinality con-

straints of the form (m p), where p is either P or P

 and m  1, or K is labeled only with 

atomic roles. 

(b) If K is a ⊤-node, then K is labeled only with negated atomic concepts or minCardinality 

constraints of the form (m p), where p is either P or P

 and m  1, or K is labeled only 

with negated atomic roles. 

Proof 

(i)(ii)(iii) Follow from the definition of G(,).   

(iv-a) Let K be a node of G(,). Assume that K is labeled with a positive concept expression e. Then, 

by construction of G(,), K is labeled only with concept expressions.  

Suppose that K is labeled with a negative concept expression f. Since e and f both label node K of 

G(,), there must be path e→f and f→e in g(,). By Prop. 2(iii), since f→e is a path in g(,) and f 

is negative, e must be negative. Contradiction. Therefore, we may conclude that f cannot be a negative 

expression.  

Thus, if K is labeled with a positive concept expression, then K is labeled only with positive concept 

expressions. Since such positive concept expressions occur in the constraints of , they must be atomic 

concepts or minCardinality constraints of the form (m p), where p is either P or P

 and m  1. 

(iv-b) Let K be a node of G(,). Assume that K is labeled with a positive role expression e. Then, by 

construction of G(,), K is labeled only with role expressions, which are in fact atomic roles or ne-

gated atomic roles. By an argument similar to that in Case (iv-a), K can only be labeled with atomic 

roles. 

(iv-c) Let K be a node of G(,). Assume that K is labeled with a negative concept expression e. By 

(iii), K is labeled with e , which is positive. Therefore, by (iv-a), K is labeled only with positive concept 

expressions. Hence, by (iii) again, K is labeled only with negative concept expressions, which must be 

negated atomic concepts or negated minCardinality constraints of the form (m p), where p is either P 

or P

 and m  1. 

(iv-d) Let K be a node of G(,). Assume that K is labeled with a negative role expression e. Then, by 

construction of G(,), K is labeled only with role expressions, which are in fact atomic roles or ne-

gated atomic roles. By an argument similar to that in Case (iv-c), K can only be labeled with negative 

atomic roles. 

(v-a) Let K and M be nodes of G(,). Assume that K→M and that M is labeled with a positive expres-

sion f. Let e be a label of K. Since, K→M, there is a path e→f in g(,). By Prop. 2(iii), e must be a pos-

itive expression. Hence, K is labeled only with positive expressions. 



  

(v-b) Let K and M be nodes of G(,). Assume that K→M and that K is labeled with a negative expres-

sion e. Let f be a label of M. Since, K→M, there is a path e→f in g(,). By Prop. 2(iv), f must be a neg-

ative expression. Hence, M is labeled only with negative expressions.  

(vi-a) Let K be a -node G(,). The proof follows by induction on the -level of K. 

Basis: K has -level 0. 

There are nodes M and N and a positive expression h such that M and N are respectively labeled with h 

and h, and K→M and K→N. Then, since K→M and M is labeled with a positive expression h, by  

(iv-a), (iv-b) and (v-a), K is labeled only with atomic concepts or minCardinalities of the form (m p), 

where p is either P or P

 and m  1, or K is labeled only with atomic roles. 

Induction hypothesis: Assume that the property holds when K has -level n. 

Induction step: Assume that K has -level n+1. 

Case I.1: There is a -node M with level n such that K→M. Then, by the induction hypothesis, the 

property holds for M. That is, M is labeled only with positive expressions. Hence, since K→M, by (iv-a), 

(iv-b) and (v-a), K is labeled only with atomic concepts or minCardinality constraints of the form (m 

p), where p is either P or P

 and m  1, or K is labeled only with atomic roles.  

Case I.2: K is labeled with a minCardinality constraint of the form (1 P) or (1 P

) and there is a  

-node M with level n such that M is labeled with P. Then, by (iv-c), K is labeled only with atomic con-

cepts or minCardinalities of the form (m p), where p is either P or P

 and m  1. 

Case I.3: K is labeled with an atomic role P and there is -node M with level n such that M is labeled 

with a minCardinality constraint of the form (1 P) or (1 P

). Then, by (iv-d), K is labeled only with 

atomic roles. 

(vi-b) Let L be a node of G(,). Assume that L is a ⊤-node. Then, by definition of ⊤-node, L is a -

node. Thus, by (vi-a), L is labeled only with atomic concepts or minCardinality constraints of the form 

(m p), where p is either P or P

 and m  1, or L  is labeled only with atomic roles. Therefore, by (iii), L 

is labeled only with negated atomic concepts or negated minCardinality constraints of the form (m p), 

where p is either P or P

 and m  1, or L is labeled only with negated atomic roles.  

Proposition 4: 

(i)  For any pair of nodes M and N of G(,), for any pair of expressions e and f that label M and 

N, respectively, if M→N then   e  f. 

(ii)  For any node K of G(,), for any pair of expressions e and f that label K,   e  f. 

(iii)  For any node K of G(,), for any expression e that labels K, if K is a -node, then   e  . 

(iv)  For any node K of G(,), for any expression e that labels K, if K is a ⊤-node, then   ⊤  e. 



  

Proof 

(i), (ii) First observe that, by construction of g(,), if there is an arc (K,L) of g(,), with K and L la-

beled with c and d, then   c  d. Hence, for any pair of nodes M and N of g(,), if M and N are la-

beled with e and f, respectively, and if there is a path from M to N in g(,), then  e  f, by the tran-

sitivity of . Then, properties (i) and (ii) follow by the construction of G(,). 

(iii) Let K be a node of G(,) and e be an expression that labels K. Assume that K is a -node. The 

proof follows by induction on the -level of K. 

Basis: K has -level 0. 

There are nodes M and N and a non-negative concept expression h such that M and N are respectively 

labeled with h and h, and K→M and K→N. Then, by (v),   e  h and   e  h, which implies 

that   e  .  

Induction hypothesis: Assume that the property holds when -nodes with level n. 

Induction step: Assume that K has -level n+1. 

Case I.1: There is a -node M with level n such that K→M . Then, by the induction hypothesis and (i), 

  e  .  

Case I.2: K is labeled with a minCardinality constraint of the form (1 P) or (1 P

) and there is a  

-node M with level n such that M is labeled with P. Assume that K is labeled with (1 P) (the other 

case is identical). Then, by the induction hypothesis,   P  . But this implies that   (1 P)  . 

Since K is labeled with e and (1 P), by (vi),   e  (1 P). Hence,   e  . 

Case I.3: K is labeled with an atomic role P and there is -node M with level n such that M is labeled 

with a minCardinality constraint of the form (1 P) or (1 P

). Assume that M is labeled with (1 P) 

(the other case is identical). Then, by the induction hypothesis,   (1 P)  . But this implies that  

  P  . Since K is labeled with e and P, by (vi),   e  P. Hence,   e  . 

(iv) Let K be a node of G(,) and e be an expression that labels K. Assume that K is a ⊤-node. Then, 

K is a -node and e labels K , by (iii). Hence, by (vii),   e   . Thus, we have that   ⊤  e.  

The next sequence of definitions leads to the notion of canonical Herbrand interpretation for a set of 

constraints, used to prove Lemma 1, which is the basis for Theorems 1 and 2. 

Definition 5: Let  be a set of distinct Skolem function symbols for G(,) as follows: 

(i)  For each node N of G(,) labeled with (n P), associate n distinct unary Skolem function sym-

bols f1[N,P],…, fn[N,P] 

(ii)  For each node N of G(,) labeled with (n P

), associate n distinct unary Skolem function 

symbols g1[N,P],…, gn[N,P]. 

(iii)  For each node N of G(,) labeled with an atomic concept or with (1 P), associate a distinct 

Skolem constant c[N] (a constant is a 0-ary function symbol). 

The Herbrand Universe [] for  is the set of first-order terms constructed using the function sym-

bols in . The terms in [] are called individuals.   



  

We say that a node K of G(,) is a (positive or negative) concept expression node iff K is labeled only 

with (positive or negative) concept expressions, and that K is a (positive or negative) role expression 

node iff K is labeled only with (positive or negative) role expressions. In view of Proposition 3(iv), any 

node K of G(,) is either a (positive or negative) concept expression node or a (positive or negative) 

role expression node. 

Assume that K is and Again, to avoid repetitions, let  be a set of distinct Skolem function symbols for 

G(,) and [] be the Herbrand Universe for . 

Definition 6:  

(i)  An instance labeling function for G(,) and [] is a function s’ that associates a set of indi-

viduals in [] to each node of G(,) labeled with concept expressions, and a set of pairs of 

individuals in [] to each node of G(,) labeled with role expressions.  

(ii)  Let N be a node of G(,) labeled with an atomic concept or with (k P). Assume that N is not 

a -node. Then, the Skolem constant c[N] is a seed term of N, and N is the seed node of c[N].  

(iii)  Let NP be the node of G(,) labeled with the atomic role P. Assume that NP is not a -node. 

For each term a, for each node M labeled with (m P), if as’(M) and there is no node K la-

beled with (k P) such that m  k and as’(K), then  

a. the pair (a, fr[M,P](a)) is called a seed pair of NP triggered by as’(M), for r[1,m].  

b. the term fr[M,P](a) is a seed term of the node L labeled with ( 1 P

), and L is called 

the seed node of fr[M,P](a), for r[2,m], if a is of the form gi[J,P](b), for some node 

J and some term b, and for r[1,m], otherwise. 

(iv)  Let NP be the node of G(,) labeled with the atomic role P. Assume that NP is not a -node. 

For each term b, for each node N labeled with (n P

), if bs’(N) and there is no node K la-

beled with ( k P

) such that n  k and bs’(K), then  

a. the pair (gr[N,P](b),b) is called a seed pair of NP triggered by bs’(N), for r[1,n].  

b. the term gr[N,P](b) is a seed term of the node L labeled with ( 1 P), and L is called 

the seed node of gr[N,P](b), for r[2,n], if b is of the form fi[J,P](a), for some node J 

and some term a, and for r[1,n], otherwise.  

Intuitively, the seed term of a node N will play the role of a unique signature of N, and likewise for a 

seed pair of a node NP. The next definition captures this intuition. 

Definition 7: A canonical instance labeling function for G(,) and [] is an instance labeling func-

tion that satisfies the following restrictions, for each node K of G(,): 

(i)  Assume that K is a concept expression node, and that K is neither a -node nor a ⊤-node. 

Then, ts’(K) iff t is a seed term of a node J and there is a path from J to K. 

(ii)  Assume that K is a role expression node, and that K is neither a -node nor a ⊤-node. Then, 

(t,u)s’(K) iff (t,u) is a seed pair of a node J and there is a path from J to K. 

(iii)  Assume that K is a -node. Then, s’(K) = . 

(iv)  Assume that K is a concept expression node and a ⊤-node. Then, s’(K) = [].  

(v)  Assume that K is a role expression node and a ⊤-node. Then, s’(K) = []  [].  



  

Proposition 5: Let s’ be canonical instance labeling function for G(,) and []. Then 

(i)     For any pair of nodes M and N of G(,), if M→N then s’(M)  s’(N). 

(ii)   For any pair of nodes M and N of G(,) that are not a -node and that both are concept ex-

pression nodes or both are role expression nodes, s’(M)  s’(N)   iff there is a seed node K 

such that K→M and K→N. 

(iii)  For any node NP of G(,) labeled with an atomic role P, for any node M of G(,) labeled 

with (m P), for any term ts’(M), either s’(NP) contains all seed pairs triggered by ts’(M), or 

there are no seed pairs triggered by ts’(M).  

(iv)  For any node NP of G(,) labeled with an atomic role P, for any node N of G(,) labeled 

with (n P

), for any term ts’(N), either s’(NP) contains all seed pairs triggered by ts’(N), or 

there are no seed pairs triggered by ts’(N).  

Proof 

Let s’ be canonical instance labeling function for G(,) and []. 

(i) Let M and N be a pair of nodes of G(,). Suppose that M→N. There are 4 cases to consider.  

Case 1: M is a -node. Then, by Def. 7(iii), s’(M)=, which trivially implies s’(M)  s’(N). 

Case 2: N is a ⊤-node. If N is a concept expression node, by Def. 7(iv), s’(N) = [], which trivially 

implies s’(M)  s’(N). If N is a role expression node, by Def. 7(v), s’(N) = []  [], which also 

trivially implies s’(M)  s’(N).  

Case 3: M is a ⊤-node. By definition of ⊤-node, M is a -node. Since by assumption M→N, by Prop. 

3(ii), N  M . Then, by definition of -node, N  is also a -node. Hence, N is also a ⊤-node. Thus, if 

N is a concept expression node, by Def. 7(iv), s’(M) = [] = s’(N), and if N is a role expression node, 

by Def. 7(v), s’(M) = []  [] = s’(N). 

Case 4: M is neither a -node nor a ⊤-node, and N is not a ⊤-node. Since M is not a -node and M→N, 

by definition of -node, N is also not a -node.  

Case 4.1: Assume that M is a concept expression node. By construction of G(,), since M→N, node N 

is also a concept expression node. We then have that M and N are concept expression nodes and they are 

not a -node or a ⊤-node. Hence, the conditions of Def. 7(i) apply to both M and N. Let ts’(M). By 

Def. 7(i), t is a seed term of a node J and J→M. Since M→N, we then have J→N. Hence, by Def. 7(i), 

ts’(N). Hence, we may conclude that s’(M)  s’(N). 

Case 4.2: Assume that M is a role expression node. By construction of G(,), since M→N, node N is 

also a role expression node. We then have that M and N are role expression nodes and they are not a  

-node or a ⊤-node. Hence, the conditions of Def. 7(ii) apply to both M and N. Let (t,u)s’(M). By Def. 

7(ii), (t,u) is a seed pair of a node J and J→M. Since M→N, we then have J→N. Hence, by Def. 7(ii), 

(t,u)s’(N). Hence, we may conclude that s’(M)  s’(N). 



  

(ii) Let M and N be a pair of nodes of G(,). Assume that M and N are not a -node and that both are 

concept expression nodes or both are role expression nodes.  

Then, since M and N are not a -node, by Def. 7(i), s’(M)    and s’(N)  . 

Case 1: Either M or N is a ⊤-node. Assume that M and N are concept expression nodes. Then, either 

s’(M)=[] or s’(N)=[]. Hence, since s’(M)   and s’(N)  , we trivially have that  

s’(M)  s’(N)  . Assume that M and N are role expression nodes. Then, either s’(M)=[][]  or 

s’(N)=[][]. Hence, since s’(M)   and s’(N)  , we trivially have that s’(M)s’(N). 

Case 2: Neither M nor N is a ⊤-node. By the assumptions, M and N are neither a -node nor a ⊤-node.  

Assume that M and N are concept expression nodes. Hence, the conditions of Def. 7(i) apply to both M 

and N. By Def. 6, a term t cannot be a seed term of two distinct nodes. Then, ts’(M)s’(N) iff t is a 

seed term of a node J and J→M and J→N. Assume that M and N are role expression nodes. Hence, the 

conditions of Def. 7(ii) apply to both M and N. By Def. 6, a pair (t,u) cannot be a seed pair of two dis-

tinct nodes. Then, (t,u)s’(M)s’(N) iff (t,u) is a seed pair of a node J and J→M and J→N. 

(iii) This property follows directly from Def. 7(ii), by observing that there may not be any seed pair trig-

gered by ts’(M), where M is labeled with (m P) such that ts’(M), if there is a node K labeled with 

(k P) such that ts’(K) and m<k.  

(iv) Follows as for (iii).  

Recall that the alphabet is understood as the (finite) set of atomic concepts and roles that occur in  and 

. Hence, in the context of  and , when we refer to an interpretation, we mean and interpretation for 

such alphabet.  

Definition 8: Let s' be a canonical instance labeling function for G(,) and []. The canonical Her-

brand interpretation induced by s’ is the interpretation s defined as follows: 

(i)  [] is the domain of s. 

(ii)  s(C)=s’(M), for each atomic concept C, where M is the node of G(,) labeled with C (there is 

just one such node). 

(iii)  s(P)=s’(N), for each atomic role P, where N is the node of G(,) labeled with P (again, there 

is just one such node).  

Lemma 1: Let s’ be a canonical instance labeling function for G(,) and []. Let s be the canonical 

Herbrand interpretation induced by s’. Then, we have: 

(i)  For each node N of G(,), for each positive expression e that labels N, s’(N)=s(e). 

(ii)  For each node N of G(,), for each negative expression e that labels N, s’(N)  s(e). 

Proof 

Let s’ be a canonical instance labeling function for G(,) and []. Let s be the interpretation induced 

by s’.  



  

(i) Let N be a node of G(,). Let e be a positive expression that labels N.  

First observe that N cannot be a ⊤-node. Indeed, by Prop 3(vi-b), ⊤-nodes are labeled only with nega-

tive expressions, which contradicts the assumption that e is a positive expression. Then, there are two 

cases to consider. 

Case 1: N is not a -node. 

We have to prove that s(e) = s’(N). 

By the restrictions on constraints and constraint expressions, since e is a positive expression, there are 4 

cases to consider. 

Case 1.1: e is an atomic concept C. 

By Def. 8(ii), s(C) = s’(N). 

Case 1.2: e is an atomic role P. 

By Def. 8(iii), s(P) = s’(N). 

Case 1.3: e is of the form (n P). 

Let NP be the node labeled with P. Then, NP is not a -node. Indeed, assume otherwise. Then, by Def. 

3(iv-b) and Def. 4, the node L labeled with (1 P) would be a -node. But, by construction of G(,), 

there is an arc from N (the node labeled with (n P)) to L. Hence, N would be a -node, contradicting 

the assumption of Case 1. Furthermore, since NP is labeled with the positive atomic role P, by Prop. 

3(vi-b), NP cannot be a ⊤-node. 

Then, since NP is neither a -node nor a ⊤-node, Def. 7(ii) applies to s’(NP).   

Recall that N is the node labeled with (n P) and that N is neither a -node nor a ⊤-node. We first prove 

that 

(1) as’(N) implies that as((n P)) 

Let as’(N). Let K be the node labeled with (k P) such that as’(K) and k is the largest possible. Since 

as’(K) and k is the largest possible, there are k pairs in s’(NP) whose first element is a, by Prop. 5(iii). 

By Def. 8(iii), s(P)=s’(NP). Hence, by definition of minCardinality, as((k P)). But again by definition 

of minCardinality, s((k P))  s((n P)), since n  k, by the choice of k. Therefore, as((n P)).   

We now prove that 

(2) as((n P)) implies that as’(N)  

Let as((n P)). By definition of minCardinality, there must be n distinct pairs (a,b1),…,(a,bn) in s(P) 

and, consequently, in s’(NP), since s(P)=s’(NP), by Def. 8(iii).  

Recall that NP is neither a -node nor a ⊤-node. Then, by Def. 7(ii) and Def. 6(iii), possibly by reorder-

ing b1,…,bn, we then have that there are nodes L0,L1,…Lv such that 

(3) (a,b1) is a seed pair of NP of the form (gi0[L0,P](u),u), triggered by us’(L0), where L0 is labeled 

with (l0 P

), for some i0[1,l0] 



  

or 

(4) (a,b1) is a seed pair of NP of the form (a, f1[L1,P](a)), triggered by as’(L1), where L1 is labeled 

with (l1 P) 

and 

(5) (a,bj ) is a seed pair of NP of the form (a, fwj[Li ,P](a)), triggered by as’(Li ), where Li is labeled 

with  

(li P), ],1)[(
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Furthermore, li  lj, for i,j[2,v], with i  j, since only one node is labeled with (li P). We may therefore 

assume without loss of generality that l1 > l2 >…> lv. But note that we then have that as’(Li ) and 

as’(Lj ) and li > lj, for each i,j[1,v], with i<j. But this contradicts the fact that (a, fwj[Lj,P](a)) is a seed 

pair of NP triggered by as’(Lj ) since, by Def. 6(iii), there could be no node Li labeled with (li P) with 

li > lj and as’(Li). This means that in fact there is just one node, L1, that satisfies (5). 

We are now ready to show that as’(N). 

Case 1.3.1: n=1. 

Case 1.3.1.1: a is of the form gi0[L0,P](u). 

Recall that NP is not a -node. Then, by Def. 6(iv), gi0[L0,P](u) is a seed term of the node labeled with 

(1 P), which must be N, since n=1 and there is just one node labeled with (1 P). Therefore, since N is 

not a -node or a ⊤-node, by Def. 7(i), as’(N). 

Case 1.3.1.2: a is not of the form gi0[L0,P](u). 

Then, by (4) and assumptions of the case, as’(L1). Since, L1 is labeled with (l1 P) and N with (1 P), 

either n=l1=1 and N=L1, or l1>n =1 and (L1,N) is an arc of G(,), by definition of G(,). Then, 

s’(L1)s’(N), using Prop. 5(i), for the second alternative. Therefore, as’(N) as desired, since as’(L1). 

Case 1.3.2: n>1. 

We first show that n  l1. First observe that, by (5) and n>1, s’(NP) contains a seed pair (a, fwj[L1,P](a)) 

triggered by as’(L1). Then, by Prop. 5(iii), s’(NP) contains all seed pairs triggered by as’(L1). In other 

words, we have that as(( n P)) and (a,b1),…,(a,bn)s’(NP) and (a,b1),…,(a,bn) are triggered by 

as’(L1). Therefore, either (a,b1),…,(a,bn) are all pairs triggered by as’(L1), in which case n=l1, or 

(a,b1),…,(a,bn), (a,bn+1),…,(a,
1l

b ), in which case n<l1. Hence, we have that n  l1.  

Since L1 is labeled with (l1 P) and N with (n P), with n  l1, either n=l1 and N=L1, or l1>n and (L1,N) 

is an arc of G(,), by definition of G(,). Then, s’(L1)s’(N), using Prop. 5(i), for the second alterna-

tive. Therefore, as’(N) as desired, since as’(L1). 

Therefore, we established that (2) holds. Hence, from (1) and (2), s’(N)=s((n P)), as desired. 

Case 1.4: e is of the form (n P

). 

The proof of this case is entirely similar to that of Case 1.2.  



  

Case 2: N is a -node.  

We have to prove that s(e) = s’(N) = . 

Again, by the restrictions on constraints and constraint expressions, since e is a positive expression, 

there are 4 cases to consider. 

Case 2.1: e is an atomic concept C. 

Then, by Def. 8(ii), we trivially have that s(C) = s’(N) = . 

Case 2.2: N is an atomic node P. 

Then, by Def. 8(iii), we trivially have that s(P) = s’(N) = . 

Case 2.3: e is a minCardinality constraint of the form (n p), where p is either P or P

 and 1≤ n.  

We prove that s((n p))=, using an argument similar to that in Case 1.3.  

Let NP be the node labeled with P.  

Case 2.1.2.1: NP is a -node 

Then, by Def. 7(iii) and Def. 8(iii), s(P)=s’(NP)=. Hence, s((n p))=.  

Case 2.1.2.2: NP is not a -node. 

By Prop. 3(vi-b), NP cannot be a ⊤-node. Then, Def. 7(ii) applies to s’(NP). 

We proceed by contradiction. So, assume that s((n p)) and let as((n p)).  

By definition of minCardinality and since s(P)=s’(NP), there must be n distinct pairs (a,b1),…,(a,bn) in 

s’(NP). Using an argument similar to that in Case 1.3, there are nodes L0 and L1 such that 

(6) (a,b1) is a seed pair of NP of the form (gi0[L0,P](u),u), triggered by us’(L0), where L0 is labeled 

with (l0 P

), for some i0[1,l0] 

or 

(7) (a,b1) is a seed pair of NP of the form (a, f1[L1,P](a)), triggered by as’(L1), where L1 is labeled 

with (l1 P) 

and 

(8) (a,bj ) is a seed pair of NP of the form (a, fwj[L1 ,P](a)), triggered by as’(L1 ), where L1 is labeled 

with (l1 P), with j[2,l1] 

We are now ready to show that no such as((n p)) exists. Recall that n>1. We first show that n  l1. 

First observe that, by (8) and n>1, s’(NP) contains a seed pair (a, fwj[L1,P](a)) triggered by as’(L1). 

Then, by Prop. 5(iii), s’(NP) contains all seed pairs triggered by as’(L1). In other words, we have that 

as(( n P)) and (a,b1),…,(a,bn)s’(NP) and (a,b1),…,(a,bn) are triggered by as’(L1). Therefore, either 

(a,b1),…,(a,bn) are all pairs triggered by as’(L1), in which case n=l1, or (a,b1),…,(a,bn), 

(a,bn+1),…,(a,
1l

b ), in which case n<l1. Hence, we have that n  l1. Since L1 is labeled with (l1 P) and N 

with (n P), with n  l1, either n=l1 and N=L1, or l1>n and (L1,N) is an arc of G(,), by definition of 



  

G(,). Then, s’(L1)s’(N), using Prop. 5(i), for the second alternative. Therefore, as’(N), since 

as’(L1). But this is impossible, since s’(N)=. 

Hence, we conclude that s((n p))=. 

Therefore, we have that, if N is a -node, then s’(N)=s(e)=, for any positive expression e that labels N.  

Therefore, we established, in all cases, that Lemma 1(i) holds. 

(ii) Let N be a node of G(,). Let e be a negative expression that labels N.  

First observe that N cannot be a -node. Indeed, by Prop 3(vi-a), -nodes are labeled only with positive 

expressions, which contradicts the assumption that e is a negative expression. Then, there are two cas-

es to consider. 

Case 1: N is not a ⊤-node. 

We have to prove that s’(N)  s(e). 

Case 1.1: N is a concept expression node. 

Suppose, by contradiction, that there is a term t such that ts’(N) and ts(e).  

Since ts(e), we have that ts(e), by definition. Let M be the node labeled with e. Hence, by Lemma 

1(i), ts’(M). That is, t  s’(M)  s’(N).  

Note that M and N are in fact dual nodes since M is labeled with e and N is labeled with e. Therefore, 

since N is neither a -node nor a ⊤-node, M is also neither a ⊤-node nor a -node, by definition of  

⊤-node. Hence, by Prop. 5(ii) and Def. 7(i), there is a seed node K such that K→M and K→N and 

ts’(K). But this is impossible. Indeed, we would have that K→M and K→N, M is labeled with e, and N 

is labeled with e, which implies that K is a -node. Hence, by Def. 7(iii), s’(K)=, which implies that 

ts’(K). Therefore, we established that, for all terms t, if ts’(N) then ts(e).  

Case 1.2: N is a role expression node. 

Follows likewise, using Prop. 5(ii) again and Def. 7(ii).  

Therefore, in both cases, we established that s’(N)  s(e), as desired. 

Case 2: N is a ⊤-node.  

Let N be the dual node of N. Since N is a ⊤-node, we have that N is a -node. Furthermore, since e 

labels N, e labels N . Since e is a positive expression, by Lemma 1(i), s’( N )=s(e)=.  

Case 2.1: N is a concept expression node. 

By Def. 7(iv) and definition of s(e), we have s’(N)=[]=s(e), which trivially implies s’(N)  s(e). 

Case 2.2: N is a role expression node. 

By Def. 7(v) and definition of s(e), we then have s’(N) = []  [] = s(e), which trivially implies 

s’(N)  s(e). 



  

Therefore, we established that, in all cases, Lemma 1(ii) holds.  

Theorem 1: Let s be the canonical Herbrand interpretation induced by a canonical instance labeling 

function for G(,) and []. Then, we have 

(i)  s is a model of . 

(ii)  Let e be an atomic concept or a minCardinality constraint of the form (1 P). Let N be the node of 

G(,) labeled with e. Assume that N is not a -node. Then s(e). 

(iii)  Let e be a minCardinality constraint of the form (k P), with k > 1. If G(,) has a node labeled 

with e which is not a -node, then s(e). 

(iv)  Let P be an atomic role. Let N be the node of G(,) labeled with P. Assume that N is not a  

-node. Then, s(P). 

Proof 

Let  be a set of normalized constraints and  be a set of constraint expressions. Let G(,) be the 

graph that represents  and . Let  be a set of distinct function symbols and [] be the Herbrand 

Universe for . Let s’ be a canonical instance labeling function for G(,) and [] and s be the inter-

pretation induced by s’.  

(i) We prove that s satisfies all constraints in .  

Let e  f be a constraint in . By the restrictions on the constraints in , e must be positive and f can be 

positive or negative. Therefore, there are two cases to consider. 

Case 1: e and f are both positive. 

Then, by Lemma 1(i), s’(M)=s(e) and s’(N)=s(f), where M and N are the nodes labeled with e and f, 

respectively. If M=N, then we trivially have that s’(M)=s’(N). So assume that MN. Since e  f is in  

and MN, there must be an arc (M,N) of G(,). By Prop. 5(i), we then have s’(M)  s’(N). Hence,  

s(e) = s’(M)  s’(N) = s(f). 

Case 2: e is positive and f is negative. 

Then, by Lemma 1(i), s’(M)=s(e) and, by Lemma 1(ii), s’(N)  s(f), where M and N are the nodes la-

beled with e and f, respectively. Since negative expressions do not occur on the left-hand side of con-

straints in , e and f cannot label nodes that belong to the same clique in the original graph. Therefore, 

we have that MN. Since e  f is in  and MN, there must be an arc (M,N) of G(,). By Prop. 5(i), 

we then have s’(M)  s’(N). Hence, s(e) = s’(M)  s’(N)  s(f). 

Thus, in both cases, s(e)  s(f). Therefore, for any constraint e  f in , we have that s  e  f, which 

implies that s is a model of .  

(ii) Let e be an atomic concept or a minCardinality constraint of the form (1 P). By Stage 1 of Def. 1, 

G(,) always has a node N labeled with e. Assume that N is not a -node. Then, by Lemma 1(i), 

s(e)=s’(N).  



  

Note that N cannot be a ⊤-node, since N is labeled with the positive expression e. Then, N is neither a 

-node nor a ⊤-node. By Def. 6(ii) and Def. 7(i), the seed term c[N] of N is such that c[N]s’(N).  

Hence, trivially, s(e)=s’(N). 

(iii) Let e be a minCardinality constraint of the form (k P), with k > 1. Assume that G(,) has a node 

N labeled with e which is not a -node. Then, by Lemma 1(i), s(e)=s’(N).  

Note that N cannot be a ⊤-node, since N is labeled with the positive expression e. Then, N is neither a 

-node nor a ⊤-node. By Def. 6(ii) and Def. 7(i), the seed term c[N] of N is such that c[N]s’(N).  

Hence, trivially, s(e)=s’(N).    

(iv) Let P be an atomic role. By Stage 1 of Def. 1, G(,) always has a node N labeled with P and a 

node M labeled with (1 P). Assume that N is not a -node. Hence, by Definition 3(ii-c), M is not a  

-node. Then, by Theorem 1(i), s((1 P))  , which implies that s(P)  .   

 

A.2 Proof of Theorem 2 

Theorem 2: Let  be a set of normalized constraints. Let e  f be a constraint and  = {e,f}. Let G(,) 

be the graph that represents  and . Then,   e  f iff one of the following conditions holds: 

(a)   The node labeled with e is a -node; or 

(b)   The node labeled with f is a ⊤-node; or 

(c)   There is a path in G(,) from the node labeled with e to the node labeled with f . 

Proof 

Let  be a set of normalized constraints. Let e  f be a constraint and  = {e,f}. Let G(,) be the graph 

that represents  and . Observe that, by construction, G(,) has a node labeled with e and a node 

labeled with f. Let M and N be such nodes, respectively. 

() We show that   e  f . There are three cases to consider: 

Case 1: M is a -node. 

Then, by Prop. 4 (iii),   e  , which trivially implies that   e  f. 

Case 2: N is a ⊤-node. 

Then, by Prop. 4 (iv),   ⊤  f, which trivially implies that   e  f. 

Case 3: There is a path in G(,) from M to N.  

Then, by Prop. 4(i) and (ii), we have that   e  f.  

() We prove that, if the conditions of the theorem do not hold, then  ⊭ e  f.  

Since e  f is a constraint, we have: 



  

(1) e is either an atomic concept C, an atomic role P or a minCardinality of the form (k p), where p is 

either P or P

, and  

(2) f is either an atomic concept C, a negated atomic concept D, an atomic role P, a negated atomic 

role Q, a minCardinality constraint of the form (k p), or a negated minCardinality constraint of the 

form (k p), where p is either P or P

 

Assume that the conditions of the theorem do not hold, that is: 

(3) The node M labeled with e is not a -node; and 

(4) The node N labeled with f is not a ⊤-node; and 

(5) There is no path in G(,) from M to N. 

To prove that  ⊭ e  f, it suffices to exhibit a model r of  such that r ⊭ e  f. Recall that r ⊭e  f iff 

(i) if e and f are concept expressions, there is an individual t such that tr(e) and tr(f) or, equivalently, 

tr(f); (ii) if e and f are role expressions, there is a pair of individuals (t,u) such that (t,u) r(e) and 

(t,u)r(f) or, equivalently, (t,u)r(f);  

Recall that, to simplify the notation, e→f denotes that there is a path in G(,) from the node labeled 

with e to the node labeled with f, and e↛f to indicate that no such path exists.  

Since e  f is a constraint, e must be non-negative and f can be negative or not. Hence, there are 2 cases 

to consider.  

Case 1: e and f are both positive. 

Let s’ be a canonical instance labeling function for G(,) and s be the interpretation induced by s’. By 

Theorem 1, s is a model of . We show that s ⊭ e  f. 

Case 1.1: N is a -node. 

Since N is a -node, by Prop. 4(iii), we have that   f  , which implies that s(f)=, since s is a mod-

el of . 

By (1), e is either an atomic concept C, an atomic role P or a minCardinality of the form (k p), where p 

is either P or P

.  By (3), M is not a -node. Hence, we have that s(e), by Theorem 1 (ii), (iii) and 

(iv). Hence, we trivially have that s ⊭ e  f. 

Case 1.2: N is not a -node. 

Observe that M and N are neither a -node nor a ⊤-node. Indeed, by assumption of the case and by (4), 

N is neither a -node nor a ⊤-node. Now, by (3), M is not a -node. Furthermore, by Prop. 2(iv-b), 

since M is labeled with a positive expression e, M cannot be a ⊤-node.  

By Lemma 1(i), since e is positive by assumption, by Def. 6(ii),(iii) and (iv), and by Def. 7(i) and (ii), 

since M is neither a -node nor a ⊤-node, we have 

(6) s’(M)=s(e) and there is a seed term c[M]s’(M), if M is a concept expression node 

s’(M)=s(e) and there is a seed pair (t,u)s’(M), if M is a role expression node 



  

By definition of canonical instance labeling function, we have: 

(7) For each concept expression node K of G(,) that is neither a -node nor a ⊤-node, c[M]s’(K) 

iff there is a path from M to K 

For each role expression node K of G(,) that is neither a -node nor a ⊤-node, (t,u)s’(K) iff 

there is a path from M to K 

By (5), we have e↛f. Furthermore, N is neither a -node nor a ⊤-node. Hence, by (7), we have: 

(8) c[M]s’(N), if N is a concept expression node 

(t,u)s’(N), if N is a role expression node 

Since f is positive, by Lemma 1(i), s’(N)=s(f). Hence, we have 

(9) c[M]s(f), if f is a concept expression 

(t,u)s(f), if f is a role expression 

Therefore, by (6) and (9), s(e)⊈s(f), that is, s ⊭e  f, as desired. 

Case 2: e is positive and f is negative. 

Assume that f is a negative expression of the form g, where g is positive. 

Case 2.1: e→g. 

Let s’ be a canonical instance labeling function for G(,) and s be the interpretation induced by s’. By 

Theorem 1(i), s is a model of . We show that s ⊭ e  f. 

By Prop. 4(i) and (ii), and since s is a model of , we have that s  e  g, if e and g label the same node, 

and s  e  g, otherwise. Hence, we have that s ⊭ e  g. Now, since f is g, we have s ⊭e  f, as de-

sired. 

Case 2.2: e↛g. 

Construct  as follows: 

(10)   is  with two new constraints, H  e and H  g, where H is a new atomic concept, if e and g are 

concept expressions, or H is a new atomic role, if e and g are role expressions 

Let r’ be a canonical instance labeling function for G(,) and r be the interpretation induced by r’. By 

Theorem 1(i), r is a model of . We show that r ⊭ e  f. 

We first observe that 

(11) There is no expression h such that e→h and g→h are paths in G(,) 

Indeed, by construction of G(,), g→h iff h→g. But e→h and h→g implies e→g, contradicting 

(5), since f is g. Hence, (11) follows. 

We now prove that  

(12) There is no positive expression h such that H→h and H→h are paths in G(,) 



  

Assume otherwise. Let h be a positive expression such that H→h and H→h are paths in G(,). 

Case 2.2.1: H→e→h and H→g→h are paths in G(,). 

Then, e→h and g→h must be paths in G(,), which contradicts (11). 

Case 2.2.2: H→e→h and H→g→h are paths in G(,). 

Then, e→h and g→h must be paths in G(,). But, since g→h iff h→g, we have e→h→g is a 

path in G(,), which contradicts (5), recalling that f is g. 

Case 2.2.3: H→e→h and H→e→h are paths in G(,). 

Then, e→h and e→h must be paths in G(,), which contradicts (3), by definition of -node. 

Case 2.2.4: H→g→h and H→g→h are paths in G(,). 

Then, g→h and g→h must be paths in G(,). Now, observe that, since g is f, that is, f and g are 

complementary expressions, g labels N , the dual node of N in G(,). Then, g→h and g→h implies 

that N is a -node of G(,), that is, N is a ⊤-node, which contradicts (4).  

Hence, we established (12).  

Let K be the node of G(,) labeled with H. Note that, by construction of , K is labeled only with H. 

Then, by (12), K is not a -node.  

By Theorem 1(i), r is a model of . Furthermore, by Theorem 1(ii) and (iv), and since K is not a  

-node, we have 

(13) r(H) 

Since H  e and H  g are in , and since r is a model of , we also have: 

(14)  r(H)  r(e) and r(H)  r(g) 

Therefore, by (13) and (14) and since f = g 

(15)  r(e)  r(g)   or, equivalently, r(e) ⊈ r(g) or, equivalently, r(e) ⊈ r(f) or, equivalently, r ⊭e  f  

But since   , r is also a model of . Therefore, for Case 2.2, we also exhibited a model r of  such 

that r ⊭e  f, as desired. 

Therefore, in all cases, we exhibited a model of  that does not satisfy e  f, as desired.  

Corollary 1: Let  be a set of normalized constraints. Let e  f be a constraint. Let G() be the graph 

that represents . Suppose that   e  f. Then: 

(a) Either e labels a node of G() or e is of the form (k P) and there is a node of G() labeled with  

( j P), where j<k. 

(b) Either f labels a node of G() or f is of the form (n P) and there is a node of G() labeled 

with (m P), where m<n.  



  

Proof 

Let  be a set of normalized constraints. Let e  f be a constraint and  = {e,f}. Let G(,) be the graph 

that represents  and , and G() be the graph that represents . Suppose that   e  f. 

Then, by Theorem 2, one of the conditions must hold 

(1) The node labeled with e is a -node; or 

(2) The node labeled with f is a ⊤-node; or 

(3) There is a path in G(,) from the node labeled with e to the node labeled with f . 

Since e  f is a constraint, e must be an atomic concept, an atomic role or an expression of the form  

(k P). Let M be the node of G(,) labeled with e, which always exists by construction of G(,), 

recalling that  = {e,f}. Assume that e does not label a node of G(). Then, by construction of G(,), 

if M is a -node of G(,) or there is a path in G(,) starting on M, then there must be an arc (M,K) of 

G(,), but not of G(), since e does not label any node of G()). But this is possible only if e is a min-

Cardinality of the form (k P) and there is a node of G() labeled with ( j P), where j<k. 

Likewise, let N be the node of G(,) labeled with f, which always exists by construction of G(,), 

recalling that  = {e,f}. Assume that f does not label a node of G().Then, by construction of G(,), if 

N is a ⊤-node of G(,) or there is a path in G(,) ending on N, then there must be an arc (L,N) of 

G(,), but not of G(), since f does not label any node of G()). But this is possible only if f is a ne-

gated minCardinality of the form (n P) and there is a node of G() labeled with (m P), where 

m<n.  

 

A.3 Proof of Theorem 3 

Theorem 3. Let  be a set of normalized constraints that contains neither role disjunctions nor maxCar-

dinality constraints and that  is role acyclic. Then,  is strictly satisfiable iff C() is strictly satisfiable.  

Proof 

Let  be a set of normalized constraints. Assume that  is role acyclic and that  contains neither role 

disjunctions nor maxCardinality constraints. 

() Assume that  is strictly satisfiable. Recall that P  Q logically implies (k P)  (k Q) and  

(k
P )  (k 

Q ). Then, we immediately have that C() is strictly satisfiable. 

() Assume that C() is strictly satisfiable. Then, there is a strict model s for C(). Construct an inter-

pretation r for  as follows: 

(1) For each atomic concept C, let r(C) = s(C)  

(2) For each atomic role P, let r(P) be as follows:  

(2.1)  if P has level 0, then r(P) = s(P)  

(2.2)  if P has level m > 0, then r(P) = s(P)  r(P1)  …  r(Pn), where P1  P ,…, Pn  P is the set of  

role inclusions in  such that P occurs on the right-hand side of the inclusion (note that P1 ,…, Pn 

must then have level m-1, since P has level m) 



  

We first show that r is a strict interpretation for . Indeed, observe that, since s is a strict model for 

C(), we have s(C)   and s(P)  . Hence, r(C) = s(C)   and r(P) = s(P)  r(P1) … r(Pn)  . 

We now show that r is a model for , that is, we show that r satisfies each formula  in . Since  does 

not contain role disjunctions or maxCardinality constraints, we only have to analyse the following cases: 

Case 1:   is a concept inclusion of the form C  D. By Def. 5(i),   is in C(). Then, since s is a model 

of C(), s(C)  s(D). Hence, by (1), we have that r(C) = s(C)  s(D) = r(D). Thus, r satisfies C  D.    

Case 2:   is a concept disjunction of the form C | D. Follows as in Case 1.  

Case 3:   is a role inclusion of the form P  Q. Follows as in Case 1, but using (2).   

Case 4:   is of the form P  C, normalized as (1 P)  C. By Def. 5(i),  is in C(). Then, since s is a 

model of C() 

(3)  s((1 P))  s(C) 

Assume that P has level m=0. Then, by (2.1), we trivially have that  

(4) r((1 P)) = s((1 P)) 

Assume that P has level m>0. Let P1  P, …, Pn  P be the set of all role inclusions in  with P on the 

right-hand side. Using Def. 5(ii), with k=1, by construction of C(), we have 

(5)  C() logically implies (1 Pi)  (1 P), for i[1,n] 

Then, since s is a model of C(), by (5), we have 

(6)  s((1 Pi))  s((1 P)), for i[1,n] 

Therefore, by (2.2), (6) and definition of the interpretation of (1 P) and (1 Pi), for i[1,n], we have 

(7)  r((1 P)) = s((1 P))  s((1 P1))  ...  s((1 Pn)) = s((1 P)) 

Hence, r satisfies (1 P)  C since, by (4), (7), (3) and (1), we have  

(8)  r((1 P)) = s((1 P))  s(C) = r(C) 

Case 5:   is of the form P

  C, normalized as (1 P )  C. Follows as in Case 4, replacing (5) by  

(5’)  C() logically implies (1 
iP )  (1 P ), for i[1,n] 

Case 6:   is of the form C  (k P). By Def. 5(i),  is in C(). Then, since s is a model of C() 

(9)  s(C)  s((k P)) 

By (2), we have s(P)  r(P), which implies that 

(10) s((k P))  r((k P)) 

Hence, r satisfies C  (k P) since, by (1), (9) and (10), we have 

(11) r(C) = s(C)  s((k P))  r((k P)) 

Case 7:   is of the form C  (k
P ). Follows as in Case 6, replacing (10) by 

(10’)  s((k
P ))  r((k

P ) .  

 


